學校通常會要求教師按照統一的教案模板進行教學設計,以保證教學的一致性和規范性。掌握了教案模板的編寫方法和技巧,教師可以更好地設計和組織教學活動。
七年級數學教案有理數的加法(模板19篇)篇一
1、知識目標:了解有理數乘法法則的合理性,掌握有理數的乘法法則,熟練運用有理數的法則進行準確運算。
2、能力目標:通過對問題的變式探索,培養自己觀察、分析、抽象、概括的能力。
3、情感目標:培養積極思考和勇于探索的精神,形成良好的學習習慣。
重點:有理數乘法運算法則的推導及熟練運用。
難點:有理數乘法運算中積的符號的確定。
1、在小學我們已經接觸了乘法,那什么叫乘法呢?
求幾個的運算,叫乘法。
一個數同0相乘,得0。
2、請你列舉幾道小學學過的乘法算式。
規定:向右為正,現在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:(+2)(+3)=。
問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:
問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
2、觀察這四個式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正數乘正數積為__數:負數乘負數積為__數:
負數乘正數積為__數:正數乘負數積為__數:
乘積的絕對值等于各乘數絕對值的_____。
思考:當一個因數為0時,積是多少?
兩數相乘,同號得,異號得,并把絕對值。
任何數同0相乘,都得。
1、你能確定下列乘積的符號嗎?
37積的符號為;(—3)7積的符號為;
3(—7)積的`符號為;(—3)(—7)積的符號為。
2先閱讀,再填空:
(—5)x(—3)。同號兩數相乘。
(—5)x(—3)=+()得正。
5x3=15把絕對值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]計算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
請同學們仿照上述步驟計算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
讓我們來總結求解步驟:
兩個數相乘,應先確定積的,再確定積的。
1、小組口算比賽,看誰更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔細計算。,注意積的符號和絕對值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列說法錯誤的是()。
a、一個數同0相乘,仍得0。
b、一個數同1相乘,仍得原數。
c、如果兩個數的乘積等于1,那么這兩個數互為相反數。
d、一個數同—1相乘,得原數的相反數。
2、在—2,3,4,—5這四個數中,任意兩個數相乘,所得的積最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、計算下列各題:
(5)(—6)(—5)=;(6)(—5)(—6)=。
七年級數學教案有理數的加法(模板19篇)篇二
理解有理數的概念,懂得有理數的兩種分類方法:會判別一個有理數是整數還是分數,是正數、負數還是零。
二、過程與方法。
經歷對有理數進行分類的探索過程,初步感受分類討論的思想。
三、情感態度與價值觀。
通過對有理數的學習,體會到數學與現實世界的緊密聯系。
教學重難點及突破。
在引入了負數后,本課對所學過的數按照一定的標準進行分類,提出了有理數的概念。分類是數學中解決問題的常用手段,通過本節課的學習,使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
教學準備。
用電腦制作動畫體現有理數的分類過程。
教學過程。
四、課堂引入。
2.舉例說明現實中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區別。
七年級數學教案有理數的加法(模板19篇)篇三
2.內容解析。
有理數的乘法是繼有理數的加減法之后的又一種基本運算.有理數乘法既是有理數運算的深入,又是進一步學習有理數的除法、乘方的基礎,對后續代數學習是至關重要的.
與有理數加法法則類似,有理數乘法法則也是一種規定,給出這種規定要遵循的原則是“使原有的運算律保持不變”.本節課要在小學已掌握的乘法運算的基礎上,通過合情推理的方式,得到“要使正數乘正數(或0)的規律在正數乘負數、負數乘負數時仍然成立,那么運算結果應該是什么”的結論,從而使學生體會乘法法則的合理性.與加法法則一樣,正數乘負數、負數乘負數的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數相乘,因此,這里關鍵是要規定好含有負數的兩數相乘之積的符號,這是有理數乘法的本質特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學重點是兩個有理數相乘的符號法則.
二、目標及其解析。
1.目標。
(1)理解有理數乘法法則,能利用有理數乘法法則計算兩個數的乘法.
(2)能說出有理數乘法的符號法則,能用例子說明法則的合理性.
2.目標解析。
達成目標(1)的標志是學生在進行兩個有理數乘法運算時,能按照乘法法則,先考慮兩乘數的符號,再考慮兩乘數的絕對值,并得出正確的結果.
達成目標(2)的標志是學生能通過具體例子說明有理數乘法的符號法則的歸納過程.
三、教學問題診斷分析。
有理數的乘法與小學學習的乘法的區別在于負數參與了運算.本課要以正數、0之間的運算為基礎,構造一組有規律的算式,先讓學生從算式左右各數的符號和絕對值兩個角度觀察這些算式的共同特點并得出規律,再以問題“要使這個規律在引入負數后仍然成立,那么應有……”為引導,讓學生思考在這樣的規律下,正數乘負數、負數乘正數、兩個負數相乘各應有什么運算結果,并從積的符號和絕對值兩個角度總結出規律,進而給出有理數乘法法則,在這個過程中體會規定的合理性.上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規律等,都會出現困難.為了解決這些困難,教師應該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規律”的要求.
本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規律.
四、教學過程設計。
教師引導學生從有理數分類的角度考慮,區分出有理數乘法的情況有:正數乘正數、正數與0相乘、正數乘負數、負數乘正數、負數乘負數.
設計意圖:有理數分為正數、零、負數,由此引出兩個有理數相乘的幾種情況,既復習有關知識,為下面的教學做好準備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發現什么規律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應該從哪幾個角度去觀察、發現規律?
如果學生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數3.
(2)其他兩個數有什么變化規律?——隨著后一個乘數逐次遞減1,積逐次遞減3.
設計意圖:構造這組有規律的算式,為通過合情推理,得到正數乘負數的法則做準備.通過追問、提示,使學生知道“如何觀察”“如何發現規律”.
教師:要使這個規律在引入負數后仍然成立,那么,3×(-1)=-3,這是因為后一乘數從0遞減1就是-1,因此積應該從0遞減3而得-3.
追問2:根據這個規律,下面的兩個積應該是什么?
3×(-2)=,
3×(-3)=.
練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規律.
設計意圖:讓學生自主構造算式,加深對運算規律的理解.
先讓學生觀察、敘述、補充,教師再總結:都是正數乘負數,積都為負數,積的.絕對值等于各乘數絕對值的積.
設計意圖:先得到一類情況的結果,降低歸納概括的難度,同時也為后面的學習奠定基礎.
問題3觀察下列算式,類比上述過程,你又能發現什么規律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學生模仿正數乘負數的過程,自己獨立得出規律.
設計意圖:為得到負數乘正數的結論做準備;培養學生的模仿、概括的能力.
追問1:要使這個規律在引入負數后仍然成立,你認為下面的空格應各填什么數?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規律.
先讓學生觀察、敘述、補充,教師再總結:都是負數乘正數,積都為負數,積的絕對值等于各乘數絕對值的積.
追問3:正數乘負數、負數乘正數兩種情況下的結論有什么共性?你能把它概括出來嗎?
設計意圖:讓學生模仿已有的討論過程,自己得出負數乘正數的結論,并進一步概括出“異號兩數相乘,積的符號為負,積的絕對值等于各乘數絕對值的積”.既使學生感受法則的合理性,又培養他們的歸納思想和概括能力.
問題4利用上面歸納的結論計算下面的算式,你能發現其中的規律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規律填空,并說說其中有什么規律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設計意圖:由學生自主探究得出負數乘負數的結論.因為有前面積累的豐富經驗,學生能獨立完成.
問題5總結上面所有的情況,你能試著自己給出有理數乘法法則嗎?
學生獨立思考后進行課堂交流,師生共同完成,得出結論后再讓學生看教科書.
學生獨立思考、回答.如果有困難,可先讓學生看課本第29頁有理數乘法法則后面的一段文字.
設計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關鍵步驟.
例1計算:
(1)。
;(2)。
;(3)。
學生獨立完成后,全班交流.
教師說明:在(3)中,我們得到了。
=1.與以前學習過的倒數概念一樣,我們說。
與-2互為倒數.一般地,在有理數中仍然有:乘積是1的兩個數互為倒數.
追問:在(2)中,8和-8互為相反數.由此,你能說說如何得到一個數的相反數嗎?
設計意圖:本例既作為鞏固乘法法則,又引出了倒數的概念(因為這個概念很容易理解),同時說明了求一個數的相反數與乘-1之間的關系(反過來有-8=8×(―1)).
設計意圖:利用有理數乘法解決實際問題,體現數學的應用價值.
小結、布置作業。
請同學們帶著下列問題回顧本節課的內容:
(2)用有理數乘法法則進行兩個有理數的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數、0的乘法運算出發,歸納出正數乘負數的法則.
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設計意圖:引導學生從知識內容和學習過程兩個方面進行小結.
作業:教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
五、目標檢測設計。
1.判斷下列運算結果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2計算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
設計意圖:檢測學生對有理數乘法法則的理解情況.
七年級數學教案有理數的加法(模板19篇)篇四
分析本節課在教材中的地位和作用,以及在分析數學大綱的基礎上確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。
1、有理數的加法在整個知識系統中的地位和作用是很重要的。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。運算能力的培養主要是在初一階段完成。有理數的加法作為有理數的運算的一種,它是有理數運算的重要基礎之一,它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、研究函數等內容的學習。
2、就第二章而言,有理數的加法是本章的一個重點。有理數這一章分為兩大部分----有理數的意義和有理數的運算,有理數的意義是有理數運算的基礎,有理數的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節的學習。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節課的教學目標、重點和難點。(結合微機顯示)。
教學大綱是我們確定教學目標,重點和難點的依據。教學大鋼規定,在有理數的加法的第一節要使學生理解有理數加法的意義,理解有理數的加法法則,并運用法則進行準確運算。因此根據教學大綱的要求,確定了本節課的教學目標。1、知識目標是:“(1)理解有理數加法的意義;(2)理解并掌握有理數加法的法則;(3)應用有理數加法法則進行準確運算;(4)滲透數形結合的思想。2、能力目標是:(1)培養學生準確運算的能力;(2)培養學生歸納總結知識的能力;3、德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想;(2)培養學生嚴謹的思維品質。有理數加法的意義與小學學習的在正有理數和零的范圍內進行的加法運算的意義相同,讓學生理解即可,有理數的加法法則的理解與運用是本節的重點內容。因此本節課的重點是:有理數加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數、絕對值不相等的異號兩數和互為相反數之間的關系,這就對法則的理解造成困難。因此我確定本節課的難,是是;有理數加法法則的理解。
本節課是在前面學習了有理數的意義的基礎上進行的,學生已經很牢固地掌握了正數、負數、數軸、相反數、絕對值等概念,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的事例,讓學生充當指揮官的角色,親身參加探索發現,從而獲取知識。在法則的得出過程中,我引進了現代化的教學工具微機,讓學生在微機演示的一種動態變化中自己發現規律歸納總結,這不但增加了課堂的趣味性提高了學生的能力。而且直接地向學生滲透了數形結合的思想。在法則的應用這一環節我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發展智力、提高能力的目的。這些我將在教學過程的設計中具體體現。而且在做練習的過程中讓學生互相提問,使課堂在學生的參與下積極有序的進行。
在教學過程中,我注重體現教師的導向作用和學生的主體地位,。本節是新課內容的學習,教學過程中盡力引導學生成為知識的發現者,把教師的點撥和學生解決問題結合起來,為學生創設情境,從而不斷激發學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程中在掌握知識同時、發展智力、受到教育。
1、引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學生的注意,所以我選擇了學生們感興趣的軍事問題,讓學生在充當指揮官的同時,有一種解決問題的成就感,從而使學生積極主動的學習,并且營造了良好的學習氛圍。
2、探索規律:法則的得出重要體現知識的發生,發展,形成過程。我通過了一個小人在坐標軸上來回的移動,使學生在小人的移動過程中體會兩個數相加的變化規律。由于采用了形式活潑的教學手段,學生能夠全副身心的投入到思考問題中去,讓學生親身參加了探索發現,獲取知識和技能的全過程。最后由學生對規律進行歸納總結補充,從而得出有理數的加法法則。
3、鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的.過程,所以習題的配備由難而易,使學生在練習的過程中能夠逐步的提高能力,得到發展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。
4、歸納總結:歸納總結由學生完成,并且做適當的補充。最后教師對本節的課進行說明。
文檔為doc格式。
七年級數學教案有理數的加法(模板19篇)篇五
2.培養學生觀察、分析、歸納及運算能力。
三、教學重點。
四、教學難點。
五、教學用具。
三角尺、小黑板、小卡片。
六、課時安排。
1課時。
七、教學過程。
(一)、從學生原有認知結構提出問題。
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數與和,求另一個加數,在小學里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數的減法,減法是加法的逆運算。
(二)、師生共同研究有理數減法法則。
問題1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教師引導學生發現:兩式的結果相同,(更多內容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的結果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導學生歸納出有理數減法法則:
減去一個數,等于加上這個數的。相反數。
教師強調運用此法則時注意“兩變”:一是減法變為加法;二是減數變為其相反數。減數變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數減法算式,引導學生發現:
在小學里學習的減法,差總是小于被減數,在有理數減法中,差不一定小于被減數了,只要減去一個負數,其差就大于被減數。
閱讀課本63頁例3。
(四)、小結。
1.教師指導學生閱讀教材后強調指出:
由于把減數變為它的相反數,從而減法轉化為加法。有理數的加法和減法,當引進負數后就可以統一用加法來解決。
2.不論減數是正數、負數或是零,都符合有理數減法法則。在使用法則時,注意被減數是永不變的。
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數減法解下列問題。
八、布置課后作業:
課本習題2.6知識技能的2、3、4和問題解決1。
九、板書設計。
2.5有理數的減法。
(一)知識回顧(三)例題解析(五)課堂小結。
例1、例2、例3。
(二)觀察發現(四)課堂練習練習設計。
十、課后反思。
七年級數學教案有理數的加法(模板19篇)篇六
學習過程:
一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
2.加法的交換律:
兩個數相加,交換_______的位置,和不變.用式子表示:a+b=_______.
3.加法的結合律:
七年級數學教案有理數的加法(模板19篇)篇七
1.1正數和負數(2)。
教學目標:
教學重點:
深化對正負數概念的理解。
教學難點:
正確理解和表示向指定方向變化的量。
教學準備:彩色粉筆。
教學過程:
一、復習引入:
學生思考并討論.
(數0既不是正數又不是負數,是正數和負數的分界,是基準.
二、講解新課。
度,用負數表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數表示收入款額,用負數表示支出款額。
思考:教科書第4頁(學生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結。
引入負數可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數表示,那么另一種量可以用負數表示.在表示具有相反意義的量時,把哪一種意義的量規定為正,可根據實際情況決定.要特別注意零既不是正數也不是負數,建立正負數概念后,當考慮一個數時,一定要考慮它的符號,這與以前學過的數有很大的區別.
五、課外作業教科書p5:2、4。
板書設計:
七年級數學教案有理數的加法(模板19篇)篇八
三、情感態度與價值觀。
體會數學與現實生活的聯系,提高學生學習數學的興趣、
教學重點、難點與關鍵。
1、重點:有理數加減法統一為加法運算,掌握有理數加減混合運算、
2、難點:省略括號和加號的加法算式的運算方法、
投影儀、
四、教學過程。
一、復習提問,引入新課。
1、敘述有理數的加法、減法法則、
2、計算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我們已學習了有理數加、減法的運算,今天我們來研究怎樣進行有理數的加減混合運算、
六、鞏固練習。
1、課本第24頁練習、
(1)題是已寫成省略加號的代數和,可運用加法交換律、結合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)題運用加減混合運算律,同號結合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)題先把加減混合運算統一為加法運算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括號和加號)。
=—16+10。
=—6。
七、課堂小結。
八、作業布置。
1、課本第25頁第26頁習題1、3第5、6、13題、
九、板書設計:
第四課時。
1、把有理數加減混合運算轉化為加法后,常用加法交換律和結合律使計算簡便、
歸納:加減混合運算可以統一為加法運算、
用式子表示為a+b—c=a+b+(—c)、
2、隨堂練習。
3、小結。
4、課后作業。
十、課后反思。
本課教學反思。
本節課主要采用過程教案法訓練學生的聽說讀寫。過程教案法的理論基礎是交際理論,認為寫作的過程實質上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學生指導,更正其錯誤,幫助學生完成寫作各階段任務。課堂是寫作車間,學生與教師,學生與學生彼此交流,提出反饋或修改意見,學生不斷進行寫作,修改和再寫作。在應用過程教案法對學生進行寫作訓練時,學生從沒有想法到有想法,從不會構思到會構思,從不會修改到會修改,這一過程有利于培養學生的寫作能力和自主學習能力。學生由于能得到教師的及時幫助和指導,所以,即使是英語基礎薄弱的同學,也能在這樣的環境下,寫出較好的作文來,從而提高了學生寫作興趣,增強了寫作的自信心。
這個話題很容易引起學生的共鳴,比較貼近生活,能激發學生的興趣,在教授知識的同時,應注意將本單元情感目標融入其中,即保持樂觀積極的生活態度,同時要珍惜生活的點點滴滴。在教授語法時,應注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡能為后續學習打下基礎。此教案設計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
在此教案過程中,應注重培養學生的自學能力,通過輔導學生掌握一套科學的學習方法,才能使學生的學習積極性進一步提高。再者,培養學生的學習興趣,增強教案效果,才能避免在以后的學習中產生兩極分化。
在教案中任然存在的問題是,學生在“說”英語這個環節還有待提高,大部分學生都不愿意開口朗讀課文,所以復述課文便尚有難度,對于這一部分學生的學習成績的提高還有待研究。
七年級數學教案有理數的加法(模板19篇)篇九
1、(6分)把下列各數填在相應的集合內:
-23,0.25,,-5.18,18,-38,10,+7,0,+12。
正數集合:{………}。
整數集合:{………}。
分數集合:{………}。
2、某校對七年級男生進行俯臥撐測試,以能做7個為標準,超過的次數用正數表示,不足的次數用負數表示,其中8名男生的成績如下表:
2-103-2-310。
(1)這8名男生的達標率是百分之幾?
(2)這8名男生共做了多少個俯臥撐?
答案。
1、
正數集合:{0.25,18,10,+7,+12………}。
整數集合:{-23,18,-38,10,+7,0,+12………}。
分數集合:{0.25,,-5.18………}。
2、
(1)50%,(2)56個。
七年級數學教案有理數的加法(模板19篇)篇十
學習目標:
1.會用正.負數表示具有相反意義的量.
2.通過正.負數學習,培養學生應用數學知識的意識.
3.通過探究,滲透對立統一的辨證思想。
學習重點:
用正.負數表示具有相反意義的量。
學習難點:
實際問題中的數量關系。
教學方法:
講練相結合。
教學過程。
一.學前準備。
通過上節課的學習,我們知道在實際生產和生活中存在著兩種不同意義的量,為了區分它們,我們用正數和負數來分別表示它們.
問題1:“零”為什么即不是正數也不是負數呢?
引導學生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題。
問題2:(教科書第4頁例題)。
先引導學生分析,再讓學生獨立完成。
(2)20xx年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長―1kg,小強體重增長0kg.
(2)六個國家20xx年商品進出口總額的增長率:
美國―6.4%,德國1.3%,
法國―2.4%,英國―3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習。
從0表示一個也沒有,是正數和負數的分界的角度引導學生理解.
在學生的討論中簡單介紹分類的數學思想先不要給出有理數的概念.
在例題中,讓學生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數表示,哪個用負數表示.
通過問題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
四.閱讀思考1頁。
(教科書第8頁)用正負數表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?
2.你知道還有那些事件可以用正負數表示允許誤差嗎?請舉例.
五.小結。
1.本節課你有那些收獲?
2.還有沒解決的問題嗎?
六.應用與拓展。
1.必做題:
教科書5頁習題4.5.:6.7.8題。
2.選做題。
1).甲冷庫的溫度是―12°c,乙冷庫的溫度比甲冷酷低5°c,則乙冷庫的溫度是.
七年級數學教案有理數的加法(模板19篇)篇十一
因為時間關系,本課的隨堂練習沒有時間完成,只剛把異號兩數相加的法則歸納出來就下課了,遠沒有完成計劃中的任務。
自以為應該是很成功的一節課卻感到寸步難行。回顧本節課,問題究竟出在哪里呢?通過仔細思考,我認為存在的有以下幾方面的問題。
1、有正確的把握好教材,是片斷1失誤的主要原因。
如情境的引入要恰當。如本節中“凈勝球”學生就不懂,如無事先進行補充說明,學生就不懂,導致一節課的進度一拖再拖。必須讓學生所接觸的例子和我們的生活密切相關,這樣才能更易為學生所接受。回顧這一整節課,其實還有很多可以對教材進行發掘的地方,如在數軸上的運動問題,也可以是讓學生在一條直路上運動,這樣可能讓學生更有興趣,再用數軸進行抽象,可能效果會更好。
《平行》這一節中所提到的滑雪運動最關鍵的是要保持兩只雪撬的平行,這一知識點對于我們這里的孩子是非常陌生的,我們都沒見過雪撬,更談不上其技巧了。
用過新教材的同行們都說,一節課完后不知這節課都在干什么!我也常有這種想法,教材是專家們研究實驗過的,專家是干啥的?現在痛定思痛,實際上是我們對新教材把握不夠,沒有搞清其重難點,沒有把握教材的真正要求。雖然我們天天在談、天天在寫“目標”“重點”“難點”,但實際上僅僅是在寫而已。實際情形往往是這樣:由于我們教學多年,大都只憑我們以往的經驗來“把握”教材,憑我們過去所了解的重難點、教學方法、教學模式來引導我們、來確定組織教學,實質是用老教法來教新教材。所以一節課下來我們自己都不知干了些什么!實際上只要我們真正掌握了其教學要求,把握了新教材的內涵、我們的思路清醒,方向明確,就知道自己應該怎樣做。
2、備課粗枝大葉,造成一些不應有的失誤。
如在片斷2中,由在數軸上先后兩次不同方向的運動,得到兩個算式:
3+(-2)=1(-3)+(+2)=-1。
教師:這兩個算式結果的'符號有何特點?
生答:兩個結果的符號都與第一個加數的符號相同。
學生的回答非常正確,而且是經過仔細觀察后回答的,但我的本意是要把絕對值較大的數放在不同的位置讓學生來觀察、歸納的。這實際上是備課工作中的馬虎大意引起的,備課缺乏深度。備課以及課堂中要盡量避免人為地給學生帶來的錯誤導向。
3、教學語言單調、生硬缺乏啟發性、激勵性。
課堂上,我十分吝嗇“請”“請坐”及一些稱頌學生的語言,認為自己天天在說沒有必要,在一定程度上就變相抑制了學生的積極性,尤其是對差生而言,他們是進行課堂學習的“學困生”更需要我們的肯定和贊揚,每一次真心的贊揚可能都會給他們帶來一次新的進步。
教學語言是決定教學效果好壞的一個重要環節。教學語言活潑風趣、幽默可以活躍課堂氣氛,調動學生的學習熱情。常言道“親其師、信其道”,語言是讓學生對教師產生親切感的一個重要渠道。啟發性的語言能使學生順理成張的回答教師提出的問題,不需要繞太多的圈子,具有點石成金的功效。通俗易懂的語言可以讓學生學得輕松自然。激勵性的語言則幫助學生樹立學習信心、肯定了他們的學習成果,讓他們時時能找到自己的價值,尤其是對“學困生”更要讓他們找到自己身上的閃光點,提高他們的學習興趣,充分發揮語言評價的功效。
七年級數學教案有理數的加法(模板19篇)篇十二
比較正數和負數的大小。
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
負數與負數的比較。
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
a、從0起往右依次是?從0起往左依次是?你發現什么規律?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的'左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習。
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
四、全課總結。
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握。可如果深入鉆研教材,其實會發現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法。
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)。
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小。”即使有學生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數軸上表示的點也就在原點左邊越遠,數也就越小。所以,抓住精髓就能以不變應萬變。
在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。
七年級數學教案有理數的加法(模板19篇)篇十三
本課(節)課題3.1認識直棱柱第1課時/共課時。
教學目標(含重點、難點)及。
1、了解多面體、直棱柱的有關概念.
2、會認直棱柱的側棱、側面、底面.。
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
教學重點與難點。
教學重點:直棱柱的有關概念.
教學難點:本節的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內容與環節預設、簡明設計意圖二度備課(即時反思與糾正)。
析:學生很容易回答出更多的答案。
師:(繼續補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學們再討論一下,能否把自己的語言轉化為數學語言。
學生活動:分小組討論。
說明:真正體現了“以生為本”。讓學生在主動探究中發現知識,充分發揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區別)。
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側棱互相平行且相等。
4.學以至用。
出示例題。(先請學生單獨考慮,再作講解)。
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養成發現問題,解決問題的創造性思維習慣)。
最后完成例題中的“想一想”
5.鞏固練習(學生練習)。
完成“課內練習”
師:我們這節課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計。
作業布置或設計作業本及課時特訓。
七年級數學教案有理數的加法(模板19篇)篇十四
《有理數的加法》是有理數混合運算的第一堂課。正因為萬事開頭難,可見這堂課在接下來的教學中起著非常重要的指向作用。下面是我上這堂課的總結:
一.在引入部分和同學們共同探討書上的問題,采用了讓學生相互先探討的方法,發現學生非常的投入,課堂氣氛被充分調動起來了。由于問題的難度一下跨越太大,太抽象,所以在教學中采用了動畫解析的過程,更為形象具體,讓問題深入淺出,容易讓學生接受。
二.在一些細節部分處理到位。比如說解應用題的步驟,應將它的完整步驟都在黑板上演示一下。電子白板大大的提高了效率和課堂容量。
三.在推導有理數加法法則時,學生的回答讓學生說完他的思路,然后引導他將其他情況補充完整。這個說明課堂應變能力十分重要,整個課堂中,我注意力十分集中,真是耳聽八方,眼觀四路。
四.整堂課的語言需要改進,應更加精練,簡潔。本堂是概念課,對于概念課來說,概念不要重復太多遍,尤其是一些說出來比較拗口的概念,容易混淆,所以當表述的差不多的時候就可以寫出來,不必在這個問題上糾纏不清。這點需要改進。說,讀,寫結合,增強記憶。
七年級數學教案有理數的加法(模板19篇)篇十五
根據定義,無限循環小數和有限小數(整數可認為是小數點后是0的小數),統稱為有理數,無限不循環小數是無理數。
但人類不可能寫出一個位數最多的有理數,對全地球人類,或比地球人更智慧的生物來說是有理數的數,對每個地球人來說,可能是無法知道它是有理數還是無理數了。因此有理數和無理數的邊界,竟然緊靠無理數,任何兩個十分接近的無理數中間,都可以加入無窮多的有理數,反之也成立。
竟然沒有人知道有理數的邊界,或者說有理數的邊界是無限接近無理數的。
定理。
定理:位數最多的非無限循環有理數是不可能被寫出的,盡管它的定義是有有限位,但它是無限趨近于無理數的,以致于沒有手段進行判斷。
證明。
證明:假設位數最多的非無限循環有理數被寫出,我們在這個數的最后再加一位,這個數還是有限位有理數,但位數比已寫出有理數多一位,證明原來寫出的不是位數最多的非無限循環有理數。所以位數最多的非無限循環有理數是不可能被寫出的。
七年級數學教案有理數的加法(模板19篇)篇十六
在本節課的教學過程中,將先復習舊知引入課題,這樣能使學生積極主動地學習。在探究有理數加法的過程中,先讓學生獨立觀察,然后通過小組合作學習交流并討論,從而發現有理數加法的性質,注重學生探究能力的培養,讓學生支親身體驗的產生過程,充分發揮學生的主觀能動性。最后通過例題來鞏固有理數的加法法則,讓學生及時地掌握所學的新知,對于學生起到有效地鞏固作用。
有理數加法是小學學過的加法去處的拓展,學生已經具有了正數、負數、數軸和絕對值等知識。加法法則實際上給出了確定兩個有理數的和的“符號”與“絕對值”的規則,它是通過分析兩個有理數哩可能出現的各種不同情況,再歸納出同號相加、民號相加、一個有理數與0相加三種情況而得到的。由于學生的思維發展水平和知識準備的限制,在分情況討論、應分成哪幾種情況、如何歸納不同情況等方面都需要教師的引導,甚至是直接講解。同號兩數的加法法則比較易于理解,而異號兩數相加時情況比較復雜,學習難度較大,需要教師加強引導。另外,根據法則做加法,需要注意“按部就班”地計算,這是一個培養良好運算習慣的過程。
七年級數學教案有理數的加法(模板19篇)篇十七
(1)正確理解乘方、冪、指數、底數等概念.
(2)會進行有理數乘方的運算.
2.過程與方法。
通過對乘方意義的理解,培養學生觀察、比較、分析、歸納、概括的能力,滲透轉化思想.
3.情感態度與價值觀。
培養探索精神,體驗小組交流、合作學習的重要性.
重、難點與關鍵。
1.重點:正確理解乘方的意義,掌握乘方運算法則.
2.難點:正確理解乘方、底數、指數的概念,并合理運算.
3.關鍵:弄清底數、指數、冪等概念,注意區別-an與(-a)n的意義.
教學過程。
一、復習提問。
1.幾個不等于零的有理數相乘,積的符號是怎樣確定的?
答:幾個不等于零的有理數相乘,積的符號由負因數的個數確定,當負因數的個數為奇數時,積為負;當負因數的個數為偶數時,積為正.值觀:體驗小組交流,合作學習的重要性。
七年級數學教案有理數的加法(模板19篇)篇十八
1、本節在引入有理數減法時花了較多的時間,目的是讓學生有充分的思考空間與時間進行探索,法則的得出,是在經歷從實際例子到抽象的過程中形成種,減法法則的歸納得出是本節課的難點,在這個過程中,設計了師生的交流對話,教師適時、適度的引導,也體現教師是學生學習的引導者、伙伴的新型師生關系。
2、在教學設計中,除了考慮學生探索新知的需要,還考慮學生對法則的理解和掌握是建立在一定量的練習基礎之上的,因此,在例題中增加了一道實際問題,讓學生在解決實際間題過程中培養運算能力。另外教師引導(提倡)學生進行解題后的反思,意在逐步培養學生思維的全面性、系統性。在反思的基礎上又讓學生規律,目的是讓學生順利地掌握法則,并達到熟練運用的程度。
七年級數學教案有理數的加法(模板19篇)篇十九
本節課的重點是有理數加法的運算律,難點是:靈活運用加法運算律進行簡化運算。課堂中學生由剛開始的引入學生學習積極性較高,達到了本節課的第一個高潮,為了突破重難點設置了兩組習題練習。
學生認真,完成正確率較高。同時展示了學生的解題技巧,并設置了大家一起來找茬這一活動,把課堂推向了第二次高潮。總體來說課堂效果很好。學生都能掌握解題技巧。