在制定教學工作計劃時,教師可以充分考慮學生的實際需求和特點,提供有針對性的教學方案。在下面的教學工作計劃范文中,我們可以看到教學目標和內容的具體設計和安排。
三角形內角和數學教案(匯總18篇)篇一
1、知識與技能:
(2)運用三角形的內角和知識解決實際問題和拓展性問題。
2、過程與方法:
(1)通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的和等于180°。
(2)知道三角形兩個角的度數,能求出第三個角的度數。
(3)發展學生動手操作、觀察比較和抽象概括的能力。
3、情感態度與價值觀:
讓學生體驗數學活動的探索樂趣,通過教學中的活動體會數學的轉化思想。
【教學重、難點】。
【教具準備】。
教學課件、各種三角形。
【教學過程】。
一、創設情景,引出問題。
1、猜謎語:
形狀似座山,穩定性能堅。三竿首尾連,學問不簡單。
(打一圖形名稱)。
2、猜三角形。
3、引出課題。
師:為什么不會出現兩個直角?今天我們就再次走進數學王國,探討三角形的內角和的奧秘。(板書課題)。
二、探究新知。
2、猜一猜。
3、驗證。
讓學生用自己喜歡的方式驗證三角形的內角和是不是180°。
4、學生匯報。
(1)測量。
(2)剪拼。
a、學生上臺演示。
b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
c、師演示。
(3)折拼。
師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。
(5)數學小知識。
5、鞏固知識。
(2)把兩個小三角形拼在一起,問:大三角形的內角和是多少度。
教師:為什么不是360°?
三、解決相關問題。
師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!
1、看圖,求未知角的度數。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數嗎?
求出下面三角形各角的度數。
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。
(3)我有一個銳角是40°。
4、求四邊形、五邊形內角和。
四、總結。
師:這節課你有什么收獲?
五、板書設計:(略)。
三角形內角和數學教案(匯總18篇)篇二
《三角形的內角和》教材是先讓學生通過計算三角尺得個內角的度數和,激發學生好奇心,進而引發學生猜想:其他三角形的內角和也是180度嗎?再通過組織操作活動驗證猜想,得出結論。根據這樣的教材安排,本課的重點也就應放在“三角形內角和是180度”的探索上,讓學生在探索中深入理解得出過程。針對教材的如此安排,我也設計了如下的開放的課堂預設:
1、要知道我們猜測的是否正確,你有什么辦法驗證呢?
先獨立思考,有想法了在小組里交流。
生一:我們組根據剛才三角板的內角和是三個角的度數加起來得出的,所以,我們就用量角器量出了三個角的度數,再加起來。
學生說出了測量的度數相加,雖然不是很精確180度,量的過程中有點誤差,得到了在180度左右。
生二:我們組是把銳角三角形的三個角跟書上一樣去折,折在一起發現正好是個平角,所以我們發現銳角三角形內角和也是180度。(及時表揚了能主動預習的好習慣。)。
生三:我們組把鈍角三角形跟剛才一組一樣,折在一起,發現也能拼成一個平角,所以鈍角三角形的內角和也是180度。
生四:我們組研究的是直角三角形,跟上面兩組的同學一樣折在一起,三個角拼起來也是一個平角,所以直角三角形的內角和也是180度。
生五:我們也是折的,但我們沒有把三個角折在一起,而是把兩個小的角折到直角那里發現兩個銳角合起來正好與直角三角形的直角重合,圖形也就成了一個長方形,兩個銳角的和是90度再加個直角也就是180度。
也有同學提出了采用了減下角再拼的方法。
以上這個小片段,雖然在孩子們表述中沒這么流利,完整,但卻是他們最真實的發現,這堂課上下來,感覺收獲很大。
自己感覺這節課的設計上把握了學生學習起點與心理,遵循了教材讓學生先猜想再驗證的思路,從學生已有的知識背景出發,為他們提供了重復粉從事數學活動的時間和交流機會。學生思考著,討論著,交流著,感悟著,在這一過程中,學生不僅掌握了知識,尋求到了解決問題的方法,更重要的是在交流中,學生的語言表達能力也得到了很大的增強。
三角形內角和數學教案(匯總18篇)篇三
1、掌握三角形內角和是180°,并能應用這一規律解決一些實際問題。
2、讓學生經歷“猜想、動手操作、直觀感知、探索、歸納、應用”等知識形成的過程,掌握“轉化”的數學思想方法,培養學生動手實踐能力,發展學生的空間思維能力。
3、在活動中,讓學生體驗主動探究數學規律的樂趣,體驗數學的價值,激發學生學習數學的熱情,同時使學生養成獨立思考的好習慣。
讓學生經歷“三角形內角和是180度”這一知識的形成、發展和應用的全過程。
三角形內角和的探索與驗證。
量角器 各種類型的三角形(硬的紙板) 三角板
一、設疑激趣,導入新課
師:今天老師給大家帶來了一位朋友(課件)出示三角形,
師:對于三角形你有哪些認識與了解。
生:三角形有銳角三角形、直角三角形、鈍角三角形
生:由三條線段圍成的平面圖形叫三角形。
師:介紹內角、內角和
三角形中每兩條邊組成的角叫做三角形的內角。
師:三角形有幾個內角。
生:三個。
師:這三個角的和,就叫做三角形的內角和。你知道三角形內角和是多少度?
生1:我通過直角三角板知道的
生3:我預習了,三角形內角和就是180度)
師:是不是向他們說的一樣,所有的三角形內角和都是180度呢?
二、自主探索,進行驗證
師:你打算怎樣驗證呢?
生1用量角器量出每個角的度數,再加一加看看是不是180度 生2:把三角形撕下來
生3:把三個角順次畫下來也可以
生4:拼一拼的方法
師:好!同學們想出了這么多辦法,下面就用你喜歡的方法驗證 師:cai多媒體課件展示操作要求:
合作探究:
1、每四人一組,每組至少選兩個三角形,用你喜歡的方法驗證
2、看那個小組驗證的方法新、方法多
師:在巡視,并進行個別操作指導
三、交流探索的方法和結果
孩子們探索的方法可能有三個:
生1:一是用量角器量各個角,然后再算出三角形中三個角的度數和,用這種方法求的結果可能是180度也可能比180度小一些,也可能比180度大一些。
生2:二是用轉化法,把三角形中三個角剪下來,拼在一起成為一個平角,由此得出三角形中三個角的和是180度。
生3:三是折一折,把三個角折在一起,折在一起成為一個平角,由此得出三角形中三個角的和是180度。
四、歸納總結,體驗成功
師:孩子們,三角形中三個角的度數和到底是多少度呢?
生:180度。
五、拓展應用
1、基礎練習
2、等邊三角形、等腰三角形、直角三角形
六、課堂小結
談一談自己的學習收獲。
三角形內角和數學教案(匯總18篇)篇四
通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。
教學重難點。
三角形的內角和課前準備電腦課件、學具卡片。
教學活動。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導學生說出90度、60度、30度。
出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。
提問:請同學們任選一個三角尺,算出他們三個角一共多少度?
學生計算后指名回答。
二、自主探索,解決問題。
提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。
學生小組活動,教師了解學生情況,個別同學加以輔導。
全班交流:讓學生分別說出三個角的度數以及它們的和。
提問:你發現了什么?
:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。
三、試一試。
要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。
教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以。
計算的結果為準。
四、鞏固提高。
完成想想做做的題目。
三角形內角和數學教案(匯總18篇)篇五
根據上面三組實驗分別證明了銳角三角形、直角三角形、鈍角三角形的內角和都等于180度。
四、練一練。
請學生自己畫任意的`三角形,并用剛才老師所講的方法自己來判斷一下三角形的內角和。
五、實踐活動:
第1題:用紙剪出一個等邊三角形。
第2題:將等邊三角形兩邊取中點,并向底作垂線,
第3題:把紙沿著虛線對折。
第4題:觀察三個角的內角加起來為多少?
三角形內角和數學教案(匯總18篇)篇六
1、知識與技能:
(2)運用三角形的內角和知識解決實際問題和拓展性問題。
2、過程與方法:
(1)通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的和等于180°。
(2)知道三角形兩個角的度數,能求出第三個角的度數。
(3)發展學生動手操作、觀察比較和抽象概括的能力。
3、情感態度與價值觀:
讓學生體驗數學活動的探索樂趣,通過教學中的活動體會數學的轉化思想。
教學課件、各種三角形。
1、猜謎語:。
形狀似座山,穩定性能堅。三竿首尾連,學問不簡單。
(打一圖形名稱)。
2、猜三角形。
3、引出課題。
師:為什么不會出現兩個直角?今天我們就再次走進數學王國,探討三角形的內角和的奧秘。(板書課題)。
2、猜一猜。
3、驗證。
4、學生匯報。
(1)測量。
(2)剪拼。
a、學生上臺演示。
b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
c、師演示。
(3)折拼。
師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。
(5)數學小知識。
5、鞏固知識。
教師:為什么不是360°?
師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!
1、看圖,求未知角的度數。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數嗎?
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。
(3)我有一個銳角是40°。
4、求四邊形、五邊形內角和。
師:這節課你有什么收獲?
三角形內角和數學教案(匯總18篇)篇七
l教學目標:
知識與技能目標:
1.會用平行線的性質與平角的定義證明三角形內角和等于180o;。
2.能用三角形內角和等于180o進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉化思想在解決問題中的應用.
過程與方法目標:
2.掌握三角形內角和定理,并初步學會利用輔助線證題,同時培養學生觀察、猜想和論證能力..
情感態度與價值觀目標:
1.通過操作、交流、探究、表述、推理等活動,培養學生的合作精神,體會數學知識內在的聯系與嚴謹性,鼓勵學生大膽提出疑問,培養學生良好的學習習慣.
l重點:
難點:
l教學流程:
一、情境引入。
內角三兄弟之爭。
在一個直角三角形里住著三個內角,平時,它們三兄弟非常團結可是有一天,老二突然不高興,發起脾氣來,它指著老大說:“你憑什么度數最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起了……”“為什么?”老二很納悶.
同學們,你們知道其中的道理嗎?
目的:通過對話激發學生的求知欲;讓學生通過小組討論:其中的道理.
三角形內角和數學教案(匯總18篇)篇八
(1)知識與技能:
掌握三角形內角和定理的證明過程,并能根據這個定理解決實際問題。
(2)過程與方法:
通過學生猜想動手實驗,互相交流,師生合作等活動探索三角形內角和為180度,發展學生的推理能力和語言表達能力。對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。逐漸由實驗過渡到論證。
通過一題多解、一題多變等,初步體會思維的多向性,引導學生的個性化發展。
(3)情感態度與價值觀:
通過猜想、推理等數學活動,感受數學活動充滿著探索以及數學結論的確定性,提高學生的學習數學的興趣。使學生主動探索,敢于實驗,勇于發現,合作交流。
三角形內角和數學教案(匯總18篇)篇九
《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內角和是180°這一規律具有重要意義。
基于以上對教材的分析以及對教學現狀的思考,我從知識與技能,教學過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:
1。通過"量一量","算一算","拼一拼","折一折"的小組活動的方法,探索發現驗證三角形內角和等于180°,并能應用這一知識解決一些簡單問題。
2。通過把三角形的內角和轉化為平角進行探究實驗,滲透"轉化"的數學思想。
3。通過數學活動使學生獲得成功的體驗,增強自信心。培養學生的創新意識,探索精神和實踐能力。
因為學生已經掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是"內角"的概念,如何驗證得出三角形的內角和是180°。因此本節課我提出的教學的重點是:驗證三角形的內角和是180°。
本節課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。
因為《課程標準》明確指出:"要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養學生初步的思維能力"。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從"猜測――驗證"展開學習活動,讓學生感受這種重要的數學思維方式。
我以引入,猜測,證實,深化和應用五個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。
呈現情境:出示多個已學的平面圖形,讓學生認識什么是"內角"。( 把圖形中相鄰兩邊的夾角稱為內角) 長方形有幾個內角 (四個)它的內角有什么特點 (都是直角)這四個內角的和是多少 (360°)三角形有幾個內角呢 從而引入課題。
讓學生整體感知三角形內角和的知識,這樣的教學, 將三角形內角和置于平面圖形內角和的大背景中, 拓展了三角形內角和的數學知識背景, 滲透數學知識之間的聯系, 有效地避免了新知識的"橫空出現"。
提出問題:長方形內角和是360°,那么三角形內角和是多少呢
引導學生提出合理猜測:三角形的內角和是180°。
(2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。
(3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。
(4)畫:根據長方形的內角和來驗證三角形內角和是180°。
一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。
利用已經學過的知識構建新的數學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯系起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯系。在整個探索過程中, 學生積極思考并大膽發言, 他們的創造性思維得到了充分發揮。
質疑: 大小不同的三角形, 它們的內角和會是一樣嗎
觀察:(指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)
結論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關。
實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。
結論:活動角就是一個平角180°, 另外兩個角都是0°。
小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯系起來,通過讓學生觀察利用"角的大小與邊的長短無關"的舊知識來理解說明。
對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯系和變化, 感悟三角形內角和不變的原因。
1。基礎練習:書本練習十四的習題9,求出三角形各個角的度數。
(2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內角和分別是多少
4。智力大挑戰: 你能求出下面圖形的內角和嗎 書本練習十四的習題
習題是溝通知識聯系的有效手段。在本節課的四個層次的練習中, 能充分注意溝通知識之間的內在聯系, 使學生從整體上把握知識的來龍去脈和縱橫聯系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發展思維, 提高綜合運用知識解決問題的能力。
第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數。
第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯系。
第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的 變化情況, 進一步理解三角形內角和的知識。
第四題是對三角形內角和知識的進一步拓展, 引導學生進一步研究多邊形的內角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內角和與三角形內角和聯系起來,并逐步發現多邊形內角和的規律, 以此促進學生對多邊形內角和知識的整體構建。
三角形內角和數學教案(匯總18篇)篇十
1.使學生經歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規律解決一些簡單的問題。
2.使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數學思考能力。
三角形內角和數學教案(匯總18篇)篇十一
2.弄清三角形按角的分類,會按角的大小對三角形進行分類;。
3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態。
5.通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯系與轉化的辯證思想。
直尺、微機。
互動式,談話法。
1、創設情境,自然引入。
把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知欲,為發現新知識創造一個最佳的心理和認知環境。
問題2你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)。
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節課學習的內容自然合理。
2、設問質疑,探究嘗試。
讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1觀察:三個內角拼成了一個什么角?
問題2此實驗給我們一個什么啟示?
問題3由圖中ab與cd的關系,啟發我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內角之和為定值,那么對三角形的其它角還有哪些特殊的關系呢?
問題1直角三角形中,直角與其它兩個銳角有何關系?
問題2三角形一個外角與它不相鄰的兩個內角有何關系?
問題3三角形一個外角與其中的一個不相鄰內角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
引導學生分析并嚴格書寫解題過程。
三角形內角和數學教案(匯總18篇)篇十二
“三角形內角和”是北師大版數學四年級下冊第二單元認識圖形的一節探索與發現課,使學生在學習了三角形的特征、高以及三角形分類的基礎上,進一步研究三角形三個角的關系。根據教學目標和學生掌握知識的情況,課堂上我圍繞以下幾點去完成教學目標:
怎樣提供一個良好的研究平臺,使學生有興趣去研究三角形內角的和呢?為此我拋出大、小兩個三角形爭吵的情境,讓學生評判誰說的對?為什么爭吵?導入課引出研究問題。“三角形的內角指的是什么?”“三角形的內角和是多少?”激發學生求知的欲望,引起探究活動。我在導入“研究三角形內角和”時,沒有按課前設計的進行,學生直接說出“三角形的內角和是180°”。而我本身卻沒有順勢進行引導,直接拋出“研究三角形內角和”這一任務,更巧妙的是借此機會鼓勵學生,以“驗證三角形內角和是不是1800”入手。這一處成為本節課最大的失誤。
“是否任何三角形內角和都是180°”,如何驗證,這正是小組合作的契機。通過小組內交流,使學生認識到可以通過多種途徑來驗證,可以量一量、拼一拼、折一折,讓學生在小組內完成從特殊到一般的研究過程。然后再小組匯報研究結果以及存在問題。例如,有些小組的學生量出內角和的度數要高于180°或低于180°,先讓學生說一下有哪些因素會影響到研究結果的準確性。
研究是為了應用,在應用“三角形內角和是180°”這一結論時,第一層練習是已知三角形兩個內角的度數,求另一個角。第二層練習是判斷題,讓學生應用結論檢驗語言的嚴密性。第三層練習是讓學生用學過的知識解決四邊形、五邊形、六邊形的內角和。練習設計提問體現開放性,“你還知道了什么”,讓學生根據計算結果運用已有經驗去判斷思索。
在教學中,由于我對學生了解的不夠充分,沒有很好的電動學生發言的積極性,另外的原因是教師本身語言枯燥,過渡語設計的不夠精彩,也影響了學生的學習興趣,以后應引起重視。在設計教案時要了解學生,深入教材,精心設計。
三角形內角和數學教案(匯總18篇)篇十三
通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。
課前準備:
電腦課件、學具卡片。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導學生說出90度、60度、30度。
出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。
提問:請同學們任選一個三角尺,算出他們三個角一共多少度?
學生計算后指名回答。
提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。
學生小組活動,教師了解學生情況,個別同學加以輔導。
全班交流:讓學生分別說出三個角的度數以及它們的和。
提問:你發現了什么?
:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。
要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。
教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以計算的結果為準。
三角形內角和數學教案(匯總18篇)篇十四
教材的小標題為“探索與發現”,說明這部分內容要求學生自主探索,并發現有關三角形內角和的性質。
三角形的內角和為何等于180度?小學階段如何比較嚴密的驗證這個性質,培養學生科學的數學素養,是這節課的重難點。在學生明確了“內角“的.含義后,通過學生的大膽猜想,從而引導學生探索三角形內角和等于多少度。大多數學生會想到測量的方法,但這只是一種不完全歸納法,還不能嚴密的證明。還可以引導學生想到將3個角轉換成平角(180度)的方法,即撕角和拼角的方法,這也為今后在初中學習內角和的證明做知識儲備。教師還可以在此基礎上,再加上1—2種形象的證明方式,如:利用“極限”思想和轉動角的方式。就是想讓更多的學生感覺到,三個內角的和是180°的可能性很大,拓寬學生思路,并培養學生的空間想象能力。
學情分析。
四年級是發展學生邏輯思維能力的黃金時期,如何才能完整、嚴密的進行數學思考,培養推理能力,是我本節課關注的重點之一。對于“三角形的內角和等于180度”這個性質,有很多學生已經知道,但卻是“知其然不知其所以然”。應在學生的學習基礎上設置更高的目標,重視猜想與驗證、培養學生事實求是的科學態度,學生對于驗證的方式和方法,老師要做到適當點撥,及時鼓勵。
教學目標。
1、學生親自動手,通過量、剪、拼、折等方法推導出三角形內角和是180度,會應用這一規律進行計算。
2、通過動手操作,找到規律,并能靈活運用。
3、培養學生的創新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。
教學重點和難點。
教學重點:學生親自動手,通過量、剪、拼、折等方法推導出三角形內角和是180度。
教學難點:會應用這一規律進行計算。
三角形內角和數學教案(匯總18篇)篇十五
學習目標:
1.通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的和等于180°。
2.知道三角形兩個角的度數,能求出第三個角的度數。3.發展學生動手操作、觀察比較和抽象概括的能力。體驗數學活動的探索樂趣,體會研究數學問題的思想方法。
教具、學具準備:
課件、學生準備直角三角形、銳角三角形和鈍角三角形各一個,并分別測量出每個內角的角度,標在圖中;一副三角板。
教具、學具準備:課件、學生準備直角三角形、銳角三角形和鈍角三角形各一個、一副三角板、磁鐵若干。
教學過程:
一、談話導入。
猜謎語:形狀似座山,穩定性能堅。
三竿首尾連,學問不簡單。
(打一幾何圖形)師:最近我們一直在研究關于三角形的知識,誰能給大家介紹一下?(學生講學過的三角形知識。)。
師:就這么簡單的一個三角形我們就得出了那么多的知識,你們。
說數學知識神氣不神奇?
今天我們還要繼續研究三角形的新知識。
二、創設情境,引出課題,以疑激思。
師:什么是三角形的內角?三角形有幾個內角?生:就是三角形內的三個角。每個三角形都有三個內角。師:這個同學說得很好,三條線段在圍成三角形后,在三角形內形成了三個角(課件閃爍三個角的弧線),我們把三角形內的這三個角,分別叫做三角形的內角。
師:有兩個三角形為了一件事正在爭論,我們來幫幫他們。(播放課件)。
師:同學們,請你們給評評理:是這樣嗎?生1:我認為是這樣的,因為大三角形大,它的三個內角的和就大。
生2:我不同意,我認為兩個三角形的三個內角和的度數都是一樣的。
生4:我同意第二個同學的意見,兩個三角形的內角和一樣大。師:現在出現了兩種不同的意見,有的同學認為大三角形的內角和大,還有部分同學認為兩個三角形的內角和的度數都是一樣的。那么到底誰說得對呢?這節課我們就一起來研究這個問題。(板書課題:
三、動手操作,探究問題,以動啟思。
1、師拿出兩個三角板,問:它們是什么三角形?生:直角三角形。
師:請大家拿出自己的兩個三角尺,在小組內說說每一個三角尺上三個角的度數,并求出這兩個直角三角形的內角和。
2、小組合作探究:
師:同學們能通過動手操作,想辦法來驗證自己的猜想嗎?請同學們先獨立思考想一想,再在小組內把你的想法與同伴進行交流,然后選用一種方法進行驗證。看誰最先發現其中的“奧秘”;看誰能爭取到向大家作“實驗成功的報告”。
(1)、小組合作。
討論驗證方法(2)匯報驗證方法、結果。
師:誰愿意給大家介紹你們小組是用什么方法來驗證的?結果怎。
樣?
方法一:
生a:我們小組是用剪拼的方法,將三角形的三個角撕下來,拼成一個平角,得到三角形的內角和是180度。
師:上來展示給大家瞧一瞧。你們看這位同學多細心呀,為了方便、不混淆,在剪之前,他先給3個角標上了符號。
師:現在請同學們看屏幕,我們在電腦里把剛才剪拼的過程重播一遍。你們看成功了,3個角拼成了一個平角,剛才剪拼的是一個銳角三角形,那還有直角三角形、鈍角三角形呢?請同學們進行剪拼,看是否能拼成一個平角。(學生操作)。
生:不管什么三角形三個角都能拼成一個平角。
師:剛才這種剪拼的方法可以不用再一個角一個角來量,就能證明三角形的內角和是180°,你們覺得這種方法好不好?真會動腦筋,不用工具也行,那我們把掌聲送給剛才這個小組。
方法二:
生b:我們小組是用折的方法,同樣得到三角形的內角和是180度。
師:請這位同學折來給大家看看。
生:3個角折成了一個平角。
師:真是個手巧的孩子。他剛才折的是一個銳角三角形,你們小組還有折其他三角形的嗎?(匯報其它三角形折的情況)。
師:說得真清楚。
方法三:
學生c:測量角的度數,再加起來。(填表)。
師:這位同學測量的是銳角(鈍角)三角形,下面就請同學們另選一個三角形求出它的內角和。(匯報:填寫結果)。
問:你們發現了什么?
小結:通過測量我們發現每個三角形的三個內角和都在180度左右。
師:三角形的內角和就是180度,只是因為我們在測量時會出現一些誤差,所以測量出的結果不是很準確。
3、小結:
師:剛才同學們用量、拼、折等方法證明了無論是什么樣的三角形內角和都是1800,(板書:是180°)現在讓我們用自豪的、肯定的語氣讀出我們的發現:“三角形的內角和是1800”。
(出示大小不等的三角形判斷內角和,判斷前面兩個三角形的對話,得出大三角形的說法是不對的。)。
四、自主練習,解決問題:
師:學會了知識,我們就要懂得去運用。下面,我們就根據三角形內角和的知識來解決一些相關的數學問題。(課件)。
1、第一關:下面每組中哪三個角能圍成一個三角形?(1)70。
60。
30。
90。
(2)42。
54。
58。
80。
2、第二關:廬山真面目:求三角形中一個未知角的度數。
3、第三關:解決生活實際問題。
(2)交通警示牌“讓”為等邊三角形,求其中一個角的度數。
4、第四關:變變變(拓展練習)。
利用三角形內角和是180°,求出下面四邊形、六邊形的內角和?(課件)。
師:小組的同學討論一下,看誰能找到最佳方法。學生匯報,在圖中畫上虛線,教師課件演示。
五、課堂總結。
帕斯卡法是國著名的數學家、物理學家、哲學家、科學家,他12歲發現“任何三角形的三個內角和是1800!
帕斯卡小的時候身體不太強壯,而父親又認為數學對小孩子有害。
且很傷腦筋,所以不敢讓他接觸到數學。在十二歲的時候,偶然看到父親在讀幾何書。他好奇的問幾何學是什么?父親為了不想讓他知道太多,只講幾何學的用處就是教人畫圖時能作出正確又美觀的圖。父親很小心的把自己的數學書都收藏好,怕被帕斯卡擅自翻動。可是卻引起了巴斯卡的興趣,他根據父親講的一些簡單的幾何知識,自己獨立研究起來。當他把發現:“任何三角形的三個內角和是一百八十度”的結果告訴他父親時,父親是驚喜交集,竟然哭了起來。父親于是搬出了歐幾里得的“幾何原理”給巴斯卡看。巴斯卡才開始接觸到數學書籍。
帕斯卡12歲發現此結論,我們同學10歲就發現了。所以只要善于用眼睛觀察,動腦思考,相信未來的數學家、物理學家、科學家就在你們中間!
三角形內角和數學教案(匯總18篇)篇十六
這節課中,我本著以學生的發展為本的教學理念,讓學生主動探索,互動學習,充分運用教、學具,讓學生動手操作,展示知識的形成,發展和應用的全過程。
一、創設問題情境,讓學生主動參與。
《數學課程標準》指出:"學生的數學學習內容應當是現實的,有意義富有挑戰性的,這些內容主要有利于學生主動地進行觀察、猜測、驗證、交流等數學活動。”上課開始,我就講故事的情景引入,提出:拿的是有原來一個角的那塊玻璃還是有原來兩個角的那塊玻璃?他們之間到底有著怎樣的關系?等問題,富有挑戰性,充滿了濃濃的吸引力,激發了學生主動學習欲望,學生有了學習動力,從而提高學習效率。
二、經歷探究過程,/xdth/jxfs/謝謝您的支持和鼓勵!
《數學課程標準》指出:“有效的數學學習活動不能單純地依賴與記憶,動手實踐自主探索和合作交流是學生學習數學的重要方式”。要讓學生逐步探究發現三角形三個內角的和是180°。本節課我安排了兩個環節:先讓學生畫一畫:銳角三角形、直角三角形、鈍角三角形;量一量:銳角三角形、直角三角形、鈍角三角形,誰的內角和大?算一算:三角形三個內角的和各是多少度。生匯報:銳角三角形是180°;直角三角形是180°度;鈍角三角形是180°,比較是不是各種形狀、大小不同的三角形內角和都是180°呢?比較發現三角形的三個內角和大約是180°。再讓學生把三角形的三個內角分別剪下來,再拼一拼或折一折。發現三個角可以拼(折)成一個平角,學生從已有的知識出發,從而推理出三角形的內角和是180°。讓學生在自主探究,合作交流中經歷,猜想、驗證、結論這一個過程,體驗探究學習的樂趣。
三、注重練習設計,把課堂向生活延伸。
練習的設計注意了梯度,既有基本練習,也有發展性練習。盡量體現因材施教,讓每一位學生都有收獲,體驗成功的喜悅。第一個練習用水果寶寶來遮住三角形其中一個角求出這個角的度數。學生根據三角形的內角和180°很快就求出了被遮住的角度數。第二個練習是在第一個練習題的基礎上增加難度,也是利用三角形內角和180°求出其它兩個角的度數。在題型上有一定的難度。學生必須根據已有的知識推理出圖形中沒有直接告訴我們的角的度數,再利用三角形內角和是180°性質來求其余角的度數。第三個練習題是學生比較喜歡的“問不倒熱線”電話互動的形式,有新意,使學生在前兩題的基礎上來解決的:一個三角形中最多有幾個直角;有幾個鈍角;至少有幾個銳角?為什么?練習不光注意了形勢變化,更注意了練習坡度。使學生的思維得到了提高,課堂氣氛活躍,學生在交流切磋中迸發出思維的火花。
這樣,不僅讓學生認識到數學就在我們身邊,生活中處處有數學,而且讓學生體會到數學知識也是可以延伸運用到生活中去,促進學生的自主發展。
三角形內角和數學教案(匯總18篇)篇十七
本節微課視頻是蘇教版數學教科書四年級下冊第78~79頁的教學內容。在教學之前,學生已經掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經構成學生進一步學習的認知基礎。《三角形的內角和》是三角形的一個重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數,知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經能得出結論:三角形的內角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內角和都是180度”的規律,從而進一步發展學生的空間觀念,提高學生的自主學習能力和推理能力。
下面就具體談談微課的教學設計:
1、通過測量、轉化、觀察和比較等活動探索發現并驗證“三角形的內角和是180度”的規律,并且能利用這一結論解決求三角形中未知角的度數等實際問題。
2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養學生的聯想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。
3、使學生通過操作的過程獲得發現規律的喜悅,獲得成就感,從而激發學生積極主動學習數學的興趣。
重點:讓學生親自驗證并總結出三角形的內角和是180度的結論
難點:對不同驗證方法的理解和掌握。
交流:不同三角尺的內角和都是一樣的嗎?三角尺的內角和有什么特征?
引導學生得出三角尺的三個內角的度數和是180度。
提問:三角尺的形狀是什么三角形?三角尺的內角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內角和是180度。)
你有什么辦法驗證這一結論呢?(動手操作,尋找答案)
方法一:拿出不同的直角三角形,分別測量三個內角的度數,再求和。(提示存在誤差,但三個內角的和都在180度左右)
方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內角和是360度,因此能得出一個直角三角形的三個內角和是180度。
出示三個三角形:直角三角形、銳角三角形和鈍角三角形。
引導:直角三角形的內角和是180度了,由此我們聯想到銳角三角形和鈍角三角形的內角和也有可能是180度。
提問:你有什么辦法來驗證這一猜想呢?
拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發現規律。
方法一:可以像上面那樣先測量每個三角形的三個內角的度數,再計算出它們的和,看看能發現什么規律。學生測量計算,教師巡視指導。
引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發現其中的規律。
方法二:既然是求三角形的內角和,我們就可以想辦法把三角形的3個內角拼在一起,看看拼成了什么角。那怎樣才能把3個內角拼在一起呢?我們可以將三角形中的3個內角撕下來,再拼在一起,會發現拼成了一個平角,是180度。
方法三:把三角形的三個內角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內角折過來拼在一起,同樣會發現拼成一個平角,是180度。
方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內角和是180度進行推理。180+180=360度,360-90-90=180度。
交流:回顧以上3個三角形的內角和的探索過程,你發現了什么規律?
總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內角和都是180度這一結論。
1、將一個大三角形剪成兩個小三角形,每個小三角形的內角和是多少度?
2、在一個三角形中,根據兩個內角的度數,求第三個內角的度數?
三角形內角和數學教案(匯總18篇)篇十八
三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180。