教學工作計劃的有效實施需要與評價、反饋相結合,及時發現問題并進行改進。現在,我們一起來看看一份充滿創意和活力的教學工作計劃,它將給大家帶來不同尋常的教學體驗。
反比例數學教案(匯總18篇)篇一
今天我們上了六下數學《成反比例的量》這節課,因為孩子們有正比例量這部分作基礎,我備好了課就直接進教室了。在講述的過程中,我不斷引導,孩子們很快理解了反比例的意義,也能準確的判斷給出的兩個量是否是成反比例的量。本來以為這節課很成功的就上完了。這時,孫晨浩提出了一個問題,在我和同學們一起了解反比例關系的圖像時它問:“這些點,為什么不用直線連接起來,而是用曲線呢?”說實話,剛開始,我聽了他的話也產生了疑惑,這是我在備課的時候沒有想到的。自己腦海中雖然有一點可以解釋的東西,卻不知道這樣說出來,六年級的孩子會不會明白,于是我就說:“這個曲線只描出了幾個點,其實在圖中的這兩個點之間還存在著許多的點,如果在把這些點描出來的話,連接起來的'就是一條曲線。”后來我又問了一些老師的建議,他們所如果把兩個點用直線連接起來的話那就變成了“成正比例的量”了,我覺得也很有道理。網上我查閱了一下是這樣的:事實上,反比例函數的圖象就是曲線,而不是由曲線連接的點。理論上,只要你每隔一個“無窮小”取一個值再把相應的圖象畫到坐標軸上那么呈現在坐標軸上的圖象就是一條平滑的曲線。
這再一次讓我相信,我們的孩子的思維要比我們想象中的寬廣的多,我很欣喜我又這樣的學生。這也讓我更深刻的明白,單純的把結論給孩子,他們腦海中勢必是有疑問的,如果讓孩子經歷了畫和探究的過程,或許在研究的過程中,這些問題也都迎刃而解了。
反比例數學教案(匯總18篇)篇二
2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.。
3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.。
理解正反比例的意義,掌握正反比例的變化的規律.。
理解正反比例的意義,掌握正反比例的變化的規律.。
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問。
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關聯的量?
教師板書:兩種相關聯的量。
(三)教師談話。
在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和。
數量也是兩種相關聯的量.你還能舉出一些例子嗎?
例1.一列火車行駛的時間和所行的路程如下表:
時間(時)。
反比例數學教案(匯總18篇)篇三
教學目標:
1、能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
教學重點、難點:
重點:能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
教學過程:
一、情景創設:
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關于x的函數關系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關于x的函數關系式為_______.
二、新授:
(1)如果小明以每分種120字的.速度錄入,他需要多少時間才能完成錄入任務?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數關系?
(2)如果蓄水池的深度設計為5m,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)。
三、課堂練習。
1、一定質量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數,當v=10m3時,=1.43kg/m3.(1)求與v的函數關系式;(2)求當v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8.
(1)求y與x之間的函數關系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設pa=x,點d到pa的距離de=y.求y與x之間的函數關系式及自變量x的取值范圍.
四、小結。
五、作業。
30.31、2、3。
反比例數學教案(匯總18篇)篇四
反比例。(教材第47頁例2)。
1.使學生理解反比例的意義,能正確地判斷兩種相關聯的量是不是成反比例的量。
2.讓學生經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。
引導學生總結出成反比例的量的特點,進而抽象概括出反比例的關系式。利用反比例的意義,正確判斷兩個量是否成反比例。
投影儀。
復習導入
1.讓學生說說什么是正比例,然后用投影出示下面的題。
下面各題中哪兩種量成正比例?為什么?
(1)每公頃產量一定,總產量和公頃數。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋時,粉刷的面積和所需涂料的數量。
教師:如果加工零件總數一定,每小時加工數和加工時間會成什么變化?關系怎樣?這就是我們這節課要學習的內容。
1.教學例2。
創設情境。
教師:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?
出示教材第47頁例2的情境圖和表格。
請學生認真觀察表中數據的變化情況,組織學生分小組討論:
(1)水的高度和底面積變化有關系嗎?
(2)水的高度是怎樣隨著底面積變化的?
(3)水的高度和底面積的變化有什么規律?
學生不難發現:底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。
教師板書配合說明這一規律:
30×10=20×15=15×20=……=300
教師根據學生的匯報說明:高度和底面積有這樣的變化關系,我們就說高度和底面積成反比例的關系,高度和底面積叫做成反比例的量。
2.歸納反比例的意義。
組織學生小組內討論:反比例的意義是什么?
學生小組內交流,指名匯報。
教師總結:像這樣,兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。
3.用字母表示。
學生探討后得出結果。
x×y=k(一定)
4.師:生活中還有哪些成反比例的量?
在教師的引導下,學生舉例說明。如:
(1)大米的質量一定,每袋質量和袋數成反比例。
(2)教室地板面積一定,每塊地磚的面積和塊數成反比例。
(3)長方形的面積一定,長和寬成反比例。
5.組織學生將例1與例2進行比較,小組內討論:
正比例與反比例的相同點和不同點有哪些?
學生交流、匯報后,引導學生歸納:
相同點:都表示兩種相關聯的量,且一種量變化,另一種量也隨著變化。
不同點:正比例關系中比值一定,反比例關系中乘積一定。
6.你還有什么疑問
?如果學生提出表示反比例關系的圖像有什么特征,教師應該引導學生觀察教材第48頁“你知道嗎?”中的圖像。
反比例關系也可以用圖像來表示,表示兩個量的點不在同一條直線上,點所連接起來的圖像是一條曲線,圖像特征不要求掌握。
課堂作業
1.教材第48頁的“做一做”。
2.教材第51頁第9、10題。
答案:1.(1)每天運的噸數和所需的天數兩種量,它們是相關聯的量。
(2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。
(3)成反比例,因為每天運的噸數變化,需要的天數也隨著變化,且它們的積一定。
2.第9題:成反比例,因為每瓶的容量與瓶數的乘積一定。
第10題:5010012
說一說成反比例關系的量的變化特征。
課后作業
1.完成練習冊中本課時的練習。
2.教材51~52頁第8、14題。
答案:
2.第8題:成反比例,因為教室的面積一定,而每塊地磚的面積與所需數量的乘積都等于教室的面積54m2。
第14題:(1)斑馬和長頸鹿的奔跑路程和奔跑時間成正比例。
(2)分析:可以通過圖像直接估計,先在橫軸上找到18分的位置,然后在兩個圖像中找到相應的點,再分別在豎軸上找到與這個點對應的數值;也可以通過計算找到。
解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
從圖像中可以知道長頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑馬跑得快。
第3課時反比例
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。
用x和y表示兩種相關聯的量,x和y成反比例關系用字母表示為×y=k(一定)
正比例與反比例的相同點和不同點:
相同點:都表示兩種相關聯的量,且一種量變化,另一種量也隨著變化。
不同點:正比例關系中比值一定,反比例關系中乘積一定。
反比例數學教案(匯總18篇)篇五
由對現實問題的討論抽象出反比例函數的概念,通過對問題的解決進一步明確:1.反比例函數的意義;2.反比例函數的概念;3.反比例函數的一般形式。
1.從現實情境和已有的知識、經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,表述反比例函數的概念。
1.經歷對兩個變量之間相依關系的討論,培養辯證唯物主義觀點。
2.經歷抽象反比例函數概念的過程,發展抽象思維能力,提高數學化意識。
1.認識到數學知識是有聯系的,逐步感受數學內容的系統性;
2.通過分組討論,培養合作交流意識和探索精神。
理解和領會反比例函數的概念。
領悟反比例函數的概念。
啟發引導、分組討論
1課時
課件
復習引入
2.在上一學段,我們研究了現實生活中成反比例的兩個量
反比例數學教案(匯總18篇)篇六
教學目標:
1、理解反比例函數,并能從實際問題中抽象出反比例關系的函數解析式;。
2、會畫出反比例函數的圖象,并結合圖象分析總結出反比例函數的性質;。
3、滲透數形結合的數學思想及普遍聯系的辨證唯物主義思想;。
4、體會數學從實踐中來又到實際中去的研究、應用過程;。
5、培養學生的觀察能力,及數學地發現問題,解決問題的能力。
教學重點:
教學用具:直尺。
教學方法:小組合作、探究式。
教學過程:
我們在小學學過反比例關系。例如:當路程s一定時,時間t與速度v成反比例。
即vt=;。
當矩形面積s一定時,長a與寬b成反比例,即ab=。
從函數的觀點看,在運動變化的過程中,有兩個變量可以分別看成自變量與函數,寫成:
(s是常數)。
(s是常數)。
一般地,函數(k是常數,)叫做反比例函數。
如上例,當路程s是常數時,時間t就是v的反比例函數.當矩形面積s是常數時,長a是寬b的反比例函數。
在現實生活中,也有許多反比例關系的例子.可以組織學生進行討論。
解:列表。
說明:由于學生第一次接觸反比例函數,無法推測出它的大致圖象.取點的時候最好多取幾個,正負可以對稱著取分別畫點描圖。
一般地反比例函數(k是常數)的圖象由兩條曲線組成,叫做雙曲線。
3、觀察圖象,歸納、總結出反比例函數的性質。
前面學習了三類基本的初等函數,有了一定的基礎,這里可視學生的程度或展開全面的討論,或在老師的引導下完成知識的學習。
顯示這兩個函數的圖象,提出問題:你能從圖象上發現什么有關反比例函數的性質呢?并能從解析式或列表中得到論證。
(1)的圖象在第一、三象限.可以擴展到k=0時的情形,即k=0時,雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個結論:xy=k,即x與y同號,因此,圖象在第一、三象限的討論與此類似。
抓住機會,說明數與形的統一,也滲透了數形結合的數學思想方法.體現了由特殊到一般的研究過程。
(2)函數的圖象,在每一個象限內,y隨x的增大而減小;。
從圖象中可以看出,當x從左向右變化時,圖象呈下坡趨勢。從列表中也可以看出這樣的變化趨勢。有理數除法說明了同樣的道理,被除數一定時,若除數大于零,除數越大,商越小;若除數小于零,同樣是除數越大,商越小。由此可歸納出,當k0時,函數的圖象,在每一個象限內,y隨x的增大而減小。
同樣可以推出的圖象的性質。
(3)函數的圖象不經過原點,且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負值且越來越小時,y的值也越來越趨近于零.因此,呈現的是雙曲線的樣子。同理,抽象出圖象的性質。
函數的圖象性質的討論與次類似。
4、小結:
本節課我們學習了反比例函數的概念及其圖象的性質.大家展開了充分的討論,對函數的概念,函數的圖象的性質有了進一步的認識.數學學習要求我們要深刻地理解,找出事物間的普遍聯系和發展規律,能數學地發現問題,并能運用已有的數學知識,給以一定的解釋.即數學是世界的一個部分,同時又隱藏在世界中。
5、布置作業習題13.81-4。
反比例數學教案(匯總18篇)篇七
知識與技能目標:使學生理解反比例關系的意義,能根據反比例的意義正確判斷兩種量是否成反比例。
能力目標:經歷反比例意義的構建過程,培養發現的能力和歸納概括的能力。
情感與態度目標:體會反比例與生活之間的聯系,感悟到事物之間相互聯系和相互轉化的辨證唯物主義的觀點。
重點:理解反比例關系的意義,能根據反比例的意義正確判斷兩種量是否成反比例。
難點:掌握反比例的特征,能夠正確判斷反比例關系。
(一)復習猜想導入,引出問題。
1、成正比例的量有什么特征?什么叫正比例關系?
2、在生活中兩個相關聯的量有的成正比例關系,還可能成什么關系?學生很自然想到反比例,激發學生的學習欲望,問學生想學反比例的哪些知識,學生大膽猜測,對反比例的意義展開合理的猜想。由此導入新課。
達成目標:猜想導課,激發探究愿望。
(二)共同探索,總結方法。
1、明確這節課的學習目標:
(1)理解反比例的意義,能正確地判斷兩種相關聯的量是不是成反比例的量。
(2)經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。
2、情境導入,學習探究。
(1)我們先來看一個實驗。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)。
提問:根據列表,你從中你發現了什么?
(2)學生討論交流。
(3)引導學生回答:表中的兩個量是高度和底面積。
高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。
每兩個相對應的數的乘積都是300.
(4)計算后你又發現了什么?
每兩個相對應的數的乘積都是300,乘積一定。
教師小結:我們就說水的高度和體積成反比例關系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關系?板書:高×底面積=水的體積(一定)。
(5)如果用字母x和y表示兩種相關聯的量,用k表示他們的積一定,反比例關系可以用一個什么樣的式子表示?板書:x×y=k(一定)。
小結:通過上面的學習,你認為判斷兩種相關聯的`量是否成反比例,關鍵是什么?
(6)歸納總結反比例的意義。
(7)比較歸納正反比例的異同點。
達成目標:比較思想是在小學數學教學中應用十分普遍的數學思想方法,《成反比例的量》是繼《成正比例的量》一課后學習的內容,兩節課的學習內容和學習方法有相似之處,學生從知識的差別中找到同一,也可以從同一中找出差別,學生學習新知識,進行深化拓展,歸納總結。
(三)運用方法,解決問題。
1、生活中,哪些相關聯的量成反比例關系,舉例說一說。
2、課后做一做每天運的噸數和運貨的天數成反比例關系嗎?為什么?
3、出示反比例圖像,與正比例圖像進行比較學習。
達成目標:學生利用對反比例概念的理解,判斷相關聯的量是否成反比例,學會分析并進行判斷。
(四)反饋鞏固,分層練習。
判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數學題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數量。
達成目標:使學生體會到數學來源于現實生活,又服務于現實生活的特點,體現數學的應用性。
(五)課堂總結,提升認識。
反比例數學教案(匯總18篇)篇八
(二)對反比例函數的三種表示方法進行鞏固和熟悉。
例題非常簡單,在例題的處理上我注重了學生解題步驟的培養,同時通過兩次變式進一步鞏固解法,并拓寬了學生的思路。在變式訓練之后,我又補充了一個綜合性題目的例題,(在上學期曾有過類似問題的,由于時間的久遠學生不是很熟悉)但在補充例題的處理上點撥不到位,導致這個問題的解決有點走彎路。
題組(三)在本節既是知識的鞏固又是知識的檢測,通過這組題目的處理,發現學生對本節知識的掌握還可以。從整體來看,時間有點緊張,小結很是倉促,而且是由老師代勞了,沒有讓學生來談收獲,在這點有些包辦的趨勢。
雖然在題目的設計和教學設計上我注重了由淺入深的梯度,但有些問題的處理方式不是恰到好處,有的學生課堂表現不活躍,這也說明老師沒有調動起所有學生的學習積極性。總之,我會在以后的教學中注意細節問題的。
還希望數學組的老題多提寶貴的意見。謝謝了!
反比例數學教案(匯總18篇)篇九
1、借助正比例的意義理解反比例的意義,能根據反比例的意義正確判斷兩種量是否成反比例。
2、在小組合作學習過程中,掌握合作學習技能,體驗合作學習的快樂。
一、創設情境,明確問題
同學們,昨天老師去幼兒園接小朋友,看見幼兒園的老師正在給小朋友們分餅干,想知道他們是怎么分的嗎?我們一起去看一看:
人數(人) | 1 | 2 | 3 | 4 | 5 |
塊數(塊) | 3 | 6 | 9 | 12 | 15 |
每人分的塊數(塊) | 3 | 3 | 3 | 3 | 3 |
仔細觀察,從這個表中,你知道了什么?你知道表中的哪兩種量成正比例嗎?(說明理由)
說一說成正比例的兩個量的變化規律。
師小明的媽媽要去銀行換一些零錢,請你幫忙算一算,各換多少張:
面值(元) | 1 | 2 | 5 | 10 | 20 |
張數(張) | 20 | ||||
總錢數(元) |
1、獨立思考:出示表格,讓學生自己觀察,提出問題并解決問題。
2、小組合作,交流探討問題。
要求:認真聽取別人的意見,詳細說明自己的'觀點,如果有不懂的地方要虛心求助,最重要的是要控制好自己的言行,小組長要協調好本組的合作過程。
3、匯報交流,發現規律。
4、教師小結,明確概念,呈現課題。
5、在理解概念的基礎上增加記憶。
1、給車棚的地面鋪上水泥磚,每塊水泥磚的面積與所需數量如下:
沒塊水泥磚的面積(平方厘米) | 500 | 400 | 300 |
數量(塊) | 600 | 750 | 1000 |
每塊水泥磚的面積與所需數量是否成反比例?為什么?
2、下表中x和y兩個量成反比例,請把表格填寫完整。
x | 2 | 40 | |||
y | 5 | 0.1 |
3、判斷下面每題中的兩種量是否成反比例,并說明理由。
(1)全班的人數一定,每組的人數和組數。
(2)圓柱的體積一定,圓柱的底面積和高。
(3)書的總頁數一定,已經看的頁數和未看的頁數。
(4)圓柱的側面積一定,它的底面周長和高。
(5)、六(1)班學生的出席人數與缺席人數。
4、下面各題中的兩種量是不是成比例?如果成比 例,成什么比例?
(1)、訂閱《小學生天地》的份數和總錢數。
(2)、小新跳高的高度與他的身高。
(3)、平行四邊形的面積一定,底和高。
(4)、正方行的邊長與它的周長。
(5)、三角形的面積一定,底和高。
5、生活中還有哪些成反比例關系的量?
1、這節課學會了什么知識?反比例的意義是什么?
2、這節課你與小組同學合作的怎么樣?以后應該怎么做?
反比例數學教案(匯總18篇)篇十
2、能根據實際問題中的條件確定反比例函數的解析式。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
重點:能利用反比例函數的相關的知識分析和解決一些簡單的實際問題。
難點:根據實際問題中的條件確定反比例函數的解析式。
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關于x的函數關系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關于x的函數關系式為_______.
(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為的'長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數關系?
(2)如果蓄水池的深度設計為5m,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)。
1、一定質量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數,當v=10m3時,=1.43kg/m3.(1)求與v的函數關系式;(2)求當v=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8.
(1)求y與x之間的函數關系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設pa=x,點d到pa的距離de=y.求y與x之間的函數關系式及自變量x的取值范圍.
30.31、2、3。
反比例數學教案(匯總18篇)篇十一
教科書第64~65頁的例3和“試一試”,“練一練”和練習十三的第6~8題。
1.使學生經歷從具體實例中認識成反比例的量的過程,初步理解反比例的意義,學會根據反比例的意義判斷兩種相關聯的量是不是成反比例。
2.使學生在認識成反比例的量的過程中,初步體會數量之間相依互變的關系,感受有效表示數量關系及其變化規律的不同數學模型,進一步培養觀察能力和發現規律的能力。
3.使學生進一步體會數學與日常生活的密切聯系,增強從生活現象中探索數學知識和規律的意識。
認識反比例的意義
掌握成反比例量的.變化規律及其特征
教學準備:多媒體
一、復習鋪墊
1、怎樣判斷兩種相關聯的量是否成正比例?用字母怎樣表示正比例關系?
2、判斷下面兩種量是否成正比例?為什么?
時間一定,行駛的路程和速度
除數一定,被除數和商
3、單價、數量和總價之間有怎樣的關系?在什么條件下,兩種量成正比例?
4、導入新課:
如果總價一定,單價和數量的變化有什么規律?這兩種量又存在什么關系?今天,我們就來研究和認識這種變化規律。
二、探究新知
1、出示例3的表格
學生填表
2、小組討論:
(1)表中列出的是哪兩種相關聯的量?它們分別是怎樣變化的?
(2)你能找出它們變化的規律嗎?
(3)猜一猜,這兩種量成什么關系?
3、全班交流
學生初步概括反比例的意義(根據學生回答,板書)
4、完成“試一試”
學生獨立填表
思考題中所提出的問題
組織交流,再次感知成反比例的量
5、抽象表達反比例的意義
根據學生的回答,板書:x×y=k(一定)揭示板書課題。
三、鞏固應用
1、練一練
每袋糖果的粒數和裝的袋數成反比例嗎?為什么?
2、練習十三第6題
先算一算、想一想,再組織討論和交流。
要求學生完整地說出判斷的思考過程。
3、練習十三第7題
先獨立思考作出判斷,再有條理地說明判斷的理由。
4、練習十三第8題
先填表,根據表中數據進行判斷,明確:長方形的面積一定,長和寬成反比例;長方形的周長一定,長和寬不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?為什么?
6、同桌學生相互出題,進行判斷并說明理由。
四、反思
學生交流
五、作業
完成《練習與測試》相關作業
板書設計:
成反比例的量
反比例數學教案(匯總18篇)篇十二
教材第106、107頁例1,例2。
1.使學生認識正、反比例應用題的特點,理解、掌握用比例知識解答應用題的解題思路和解題方法,學會正確地解答基本的正、反比例應用題。
2.進一步培養學生應用知識進行分析、推理的能力,發展學生思維。
認識正、反比例應用題的特點。
掌握用比例知識解答應用題的解題思路。
1.判斷下面的量各成什么比例。
(1)工作效率一定,工作總量和工作時間。
(2)路程一定,行駛的速度和時間。
讓學生先分別說出數量關系式,再判斷。
2.根據條件說出數量關系式,再說出兩種相關聯的量成什么比例,并列出相應的等式。
(1)一臺機床5小時加工40個零件,照這樣計算,8小時加工64個。
(2)一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。
指名學生口答,老師板書。
3.引入新課。
從上面可以看出,生產、生活中的一些實際問題,應用比例的知識,也可以根據題意列一個等式。所以,我們以前學過的一些應用題,還可以應用比例的知識來解答。這節課,就學習正、反比例應用題。(板書課題)。
1.教學例1。
(1)出示例1,讓學生讀題。
(2)說明:這道題還可以用比例知識解答。
(3)小結:
提問:誰來說一說,用正比例知識解答這道應用題要怎樣想?怎樣做?指出:先按題意列關系式判斷成正比例,再找出兩種相關聯量里相對應的數值,然后根據正比例關系里比值一定,也就是兩次籃球個數與總價對應數值比的比值相等,列等式解答。
2.教學改編題。
出示改變的問題,讓學生說一說題意。請同學們按照例1的方法自己在練習本上解答。同時指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據是什么。
3.教學例2。
(1)出示例2,學生讀題。
(2)誰能仿照例l的解題過程,用比例知識來解答例2?請同學們自己來試一試。指名板演,其余學生做在練習本上。學生練習后提問是怎樣想的。效率和時間的對應關系怎樣,檢查列式解答過程,結合提問弄清為什么列成積相等的等式解答。
(3)提問:按過去的方法是先求什么再解答的?先求總量的應用題現在用什么比例關系解答的?誰來說一說,用反比例關系解答這道應用題是怎樣想,怎樣做的?指出;解答例2要先按題意列出關系式,判斷成反比例,再找出兩種相關聯量里相對應的數值,然后根據反比例關系里積一定,也就是兩次修地下管道相對應數值的乘積相等,列等式解答。
4.小結解題思路。
請同學們看一下黑板上例1、例2的解題過程,想一想,應用比例知識解答應用題,是怎樣想怎樣做的?同學們可以相互討論一下,然后告訴大家。指名學生說解題思路。指出:應用比例知識解答應用題,先要判斷兩種相關聯的量成什么比例關系,(板書:判斷比例關系)再找出相關聯量的對應數值,(板書:找出對應數值)再根據正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認為解題時關鍵是什么?(正確判斷成什么比例)怎樣來列出等式?(正比例比值相等,反比例乘積相等)。
1.做練一練。
指名兩人板演,其余學生做在練習本上。集體訂正,讓學生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關系,才能根據正比例或反比例的意義正確列式。
2.做練習十三第1題。
先自己判斷,小組交流,再集體訂正。
這節課學習了什么內容?正、反比例應用題要怎樣解答?你還認識了些什么?
完成練習十三第2~6題的解答。
反比例數學教案(匯總18篇)篇十三
p53~54、第4~13題,思考題,正、反比例應用題的練習。
進一步掌握正、反比例的意義,能正確應用比例知識解答基本的正、反比例應用題,并溝通不同解法之間的聯系,進一步提高學生判斷,分析和推理等思維能力。
一、基本訓練。
p53第4題,口答并說明理由。
二、基本題練習。
1、做練習十第5題。
2提問:按過去的算術解法,第(1)題要先求什么數量?第(2)題呢?
用比例的知識怎樣解答呢,請大家自己做一做。
評講:說一說是怎樣想的`?
(板書:速度×時間=路程(一定)=反比例。
提問:正、反比例應用題解題過程有什么相同的地方?解題方法有什么不同?為什么?
3、練習:(略)。
三、綜合練習。
3、練習十第11題。
啟發學生用幾種方法解答。
4、做練習十第13題。
(1)提問:這是一道什么應用題?可以怎樣列式解答?
(2)把樹苗總數看做單位“1”,成活棵數是94%,你還能用比例知識解答嗎?
四、講解思考題。
引導:增加鉛以后,鉛與錫的比是5:3,有怎樣的關系式?
五、課堂:
通過本課的練習,你進一步明確了哪些內容?
六、作業:
第8、9、10題。
七、課后作業:
第6、7、12題。
反比例數學教案(匯總18篇)篇十四
教學目標:
知識與技能:
1.結合豐富的實例,認識反比例。
2.能根據反比例的意義,判斷兩個相關聯的量是不是反比例。
過程與方法:
通過猜想、分析、對比、概括、舉例、判斷等活動,結合實例,理解反比例的意義,認識反比例。
情感態度價值觀:
培養學生自主、合作學習、探索新知的能力,激發學習數學的熱情。感受反比例關系在生活中的廣泛應用。初步滲透函數思想。
認識反比例,根據反比例意義判斷兩個相關聯的量是否成反比例。
認識反比例,根據反比例意義判斷兩個相關聯的量是否成反比例。
電腦課件
一、復習引入
1、計算
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)文具盒的單價一定,買文具盒的個數和總價。
(2)一堆貨物一定,運走的量和剩下的量。
(3)汽車行駛的速度一定,行駛的路程和時間。
3、說說什么是正比例。
師:大家對正比例知識理解掌握得非常好,接下來我們就該學習什么了?
二、出示學習目標
1.能根據反比例的意義,判斷兩個相關聯的量是不是反比例。
2.通過猜想、分析、對比、概括、舉例、判斷等活動,結合實例,理解反比例的意義,認識反比例。
3.培養學生探索研究的能力,感受反比例關系在生活中的廣泛應用。
三、指導自學
師:給你們講個小故事:
過了幾天,財主到了裁縫店取帽子,結果一看,頓時傻了眼:10頂的帽子小得只能戴在手指頭上了!
學習提示:獨立思考?
1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”
合作學習小組討論上述的問題。看書合作學習
1、把25頁例
2、例3的表格補充完整。
4、你知道什么是反比例嗎?
四、學生自學
五、檢查自學效果
讓學生說說自學要求中的內容。
師歸納:兩種相關聯的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。
六、引導更正,指導運用
你們還找出類似這樣關系的量來嗎?”
學生:要走一段路,速度越慢(快),用的時間就越多(少)運一堆貨物,每次運的越多(少),運的次數就越小(多)百米賽跑,路程100米不變,速度和時間是反比例;排隊做操,總人數不變,排隊的行數和每行的人數是反比例;長方體的體積一定,底面積和高是反比例。
七、當堂訓練基礎練習
1、填空
兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應的兩個數的______,這兩種量叫做成反比例的量,它們的關系叫做_______關系。
2、判斷下面每題中的兩種量是不是成反比例,并說明理由。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數。
(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。
(3)生產電視機的總臺數一定,每天生產的臺數和所用的天數。
(4)圓柱體的體積一定,底面積和高。
(5)小林做10道數學題,已做的題和沒有做的題。
(6)長方形的長一定,面積和寬。
(7)平行四邊形面積一定,底和高。提高練習
四、小結
通過這節課的學習,你有什么收獲?
相關聯,一個量變化,另一個量也隨著變化積一定
xy=k(一定)
反比例數學教案(匯總18篇)篇十五
運用反比例函數解釋生活中的一些規律、解決一些實際問題
難點
把實際問題利用反比例函數轉化為數學問題加以解決
活動流程圖
活動內容和目的
活動1創設情境,引出問題
活動2分析解決問題
活動3從函數的觀點進一步分析規律
活動4鞏固練習
活動5課堂小結、布置作業
教師提出生活中遇到的難題,請學生幫助解決,激發學生的興趣
與學生共同分析實際問題中的變量關系,引導學生利用反比例函數解決問題
引導學生追尋杠桿原理中蘊涵的規律,從反比例函數的圖象、性質等角度挖掘
通過課堂練習,提高學生運用反比例函數解決實際問題的能力
歸納、總結所學,體會利用函數的觀點解決實際問題
問題與情境
師生行為
設計意圖
如何打開這個未開封的奶粉桶呢?―
教師提出實際生活中的問題,學生提出解決辦法,教師引出利用杠桿原理解決問題。
能否從數學角度探索杠桿原理中蘊涵的變量關系呢?
讓學生了解到日常生活中存在著許多兩個量之間具有反比例關系的例子,自然引入課題
展示問題1:
幾位同學玩撬石頭的游戲,已知阻力和阻力臂不變,分別是1200牛頓和0.5米,設動力為f,動力臂為。回答下列問題:
(1)動力f與動力臂有怎樣的函數關系?
不妨列表描點畫出圖象
(圖象在第三象限會有嗎?)
分析問題中變量間的關系
教師按照學生的認知規律有層次、有步驟地引導學生分析解決問題
從函數的觀點進一步分析規律
(5)地球重量的近似值為(即為阻力),假設阿基米德有500牛頓的力量,阻力臂為20xx千米,請你幫助阿基米德設計該用動力臂為多長的杠桿才能把地球撬動?利用反比例函數的變化規律解釋實際生活中一些問題深入挖掘動力臂與動力f又有怎樣的函數關系呢?待定系數法解決函數問題公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”:
阻力阻力臂=動力動力臂,他形象地說,“給我一個支點我可以把地球撬動”
展示練習
市政府計劃建設一項水利工程,工程需要運送的土石方總量為米,某運輸公司承辦了該項工程運送土方的任務。
歸納、總結
作業:教科書習題17.2第6題
教師引導學生回憶、總結,教師予以補充
通過小結,使學生把所學知識進一步內化、系統化
反比例數學教案(匯總18篇)篇十六
知識與技能:1.進一步熟悉作函數圖象的主要步驟,會作反比例函數的圖象。
2.體會函數的三種表示方法的相互轉換,對函數進行認識上的整合。
3.培養學生從函數圖象中獲取信息的能力,初步探索反比例函數的性質。
過程與方法:通過學生自己動手列表,描點,連線,提高學生的作圖能力;通過觀察圖象,概括反比例函數圖象的有關性質,訓練學生的概括總結能力.
情感、態度與價值觀:讓學生積極參與到數學學習活動中去,增強他們對數學學習的好奇心和求知欲。
教學難點 1) 重點:畫反比例函數圖象并認識圖象的特點.
2)難點:畫反比例函數圖象.
教學關鍵 教師畫圖中要規范,為學生樹立一個可以學習的模板
教學方法 激發誘導,探索交流,講練結合三位一體的教學方式
教學手段 教師畫圖,學生模仿
教具 三角板,小黑板
學法 學生動手,動眼,動耳,采用自主,合作,探究的學習方法
(包含課前檢測、新課導入、新課講解、課堂練習、小結、形成性檢測、反饋拓展、作業布置)
內 容 設計意圖
1.什么叫做反比例函數;
(一般地,如果兩個變量x、y之間的關系可以表示成y= (k為常數,k0)的形式,那么稱y是x的反比例函數。)
2.反比例函數的定義中需要注意什么?
(1)k為常數,k0
(2)從y= 中可知x作為分母,所以x不能為零.
y=kx+b y=kx
k0 一、二、三 一、三
b0 一、三、四
k0 一、二、四 二、四
b0 二、三、四
可以
問題3:畫圖象的步驟有哪些呢?
(1)列表
(2)描點
(3)連線
(教學片斷:
師:上一節課我們研究了反比例函數,今天我們繼續研究反比例函數,下面哪位同學說一下自己對反比例函數的了解。
生:我知道反比例函數來源于生活,生活中的許多問題都屬于反比例函數問題,例如,在勻速運動中當路程一定時,且路程不等于零,則速度與時間成反比例函數關系。
生:我知道反比例函數的解析式為 且k不等于0
生:我知道反比例函數的圖象是曲線。
生:該研究反比例函數圖象和性質了。
師:現在給大家幾分鐘的時間探討一下反比例函數圖象該怎么畫?
學生思考、交流、回答。
提問:你能畫出 的圖象嗎?
學生動手畫圖,相互觀摩。
(1) 列表(取值的特殊與有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描點(描點的準確)
(3)連線(注意光滑曲線)
議一議
(1)你認為作反比例函數圖象時應注意哪些問題?與同伴進行交流。
(2)如果在列表時所選取的數值不同,那么圖象的形狀是否相同?
(3)連接時能否連成折線?為什么必須用光滑的曲線連接各點?
(4)曲線的發展趨勢如何?
曲線無限接近坐標軸但不與坐標軸相交
學生先分四人小組進行討論,而后小組匯報
做一做
作反比例函數 的圖象。
學生動手畫圖,相互觀摩。
想一想
觀察 和 的圖象,它們有什么相同點和不同點?
學生小組討論,弄清上述兩個圖象的異同點
相同點:(1)圖象分別都是由兩支曲線組成(2)都不與坐標軸相交(3)都是軸對稱圖形(y=x、y=-x)和中心對稱圖形(對稱中心(0,0)即坐標原點)
不同點:第一個圖象位于一、三象限;第二個圖象位于二、四象限
反比例函數 y = 有下列性質:反比例函數的圖象y = 是由兩支曲線組成的。
(1) 當 k0 時,兩支曲線分別位于第___、___象限,
(2) 當 k0 時,兩支曲線分別位于第___、___象限.
(1)
(1)已知函數 的圖象分布在第二、四象限內,則 的取值范圍是_________
(2)若ab0,則函數 與 在同一坐標系內的圖象大致可能是下圖中的 ( )
(a) (b) (c) (d)
(3)畫 和 的圖象
在同一坐標系中作出函數y=2/x與函數y=x-1的圖象,并利用圖象求它們的交點坐標.
(1) 作反比例函數y=2/x,y=4/x,y=6/x的圖象
(2) 習題5.2.1
(3)預習下一節 反比例函數的圖象與性質ii
復習上節主要內容
(3分鐘)
(5分鐘)
運用類比研究一次函數性質的方法,來研究反比例函數圖象與性質
由于初中學生屬于義務教育階段,沒有經過入學選拔,所以兩極分化比較嚴重,上面提出的問題帶有一定的開放性,面向各層次的學生,使不同層次的學生都有一定的問題可答,從而激發起不同層次學生的學習積極性。
數學教學重要目的之一是使學生學會學習,利用這個問題可以使學生學會尋找研究的方向,會提出研究的課題,提高學習的能力。
數學學習活動是學生對自己頭腦中已有知識的重新建構,所以利用學生頭腦中已有的一次函數圖象與性質,及研究一次函數圖象與性質的方法,創設問題情境,可以激發學習研究的熱情,點燃學生思維的火花,并使學生知道如何研究新問題,使學生在探究過程中實現知識的遷移,形成新的認知結構。
(12分鐘)
引導學生正確畫出反比例函數圖象,并能歸納反比例函數圖象的有關性質.
在畫第一個圖象時,教師要在黑板上用三角板一步一步的示范,在重要地方再重點強調,直到整個圖象的完成。只有以身示范,同學學習才有樣可依,有了正確標準的樣板,學生學習也變得容易。這樣可以培養學生嚴謹與嚴密的做題步驟以及做題的規范性。
注:(1)x取絕對值相等符號相反的數值
(2) x取值要盡可能多,而且有代表性
(3)連線時用光滑曲線從小到大依次連接
(4)圖象不與坐標軸相交
在此學生若是回答圖象是軸對稱圖象或者中心對稱圖象都要予以肯定,這些內容留給學生課下探討,并鼓勵提出問題的學生繼續探索不要放棄。
(3分鐘)
此時圖象由學生仿照第一個在下邊自己獨立畫出,并且監督學生,在有學生畫的不對的地方及時指出,并使其改正后鼓勵。最后在黑板上畫出正確的圖象,使學生自己畫的圖象與黑板對比。
(5分鐘)
(4分鐘)
培養學生歸納,語言表達能力
此中注意分類討論思想的應用
鞏固反比例函數圖象性質
(2分鐘)
與新課較接近的簡化檢測可以再次回顧所學內容,以及內容重點。這類題多為口算或口答,題目簡單不過所學內容可以全部體現。
(5分鐘)
這類練習要求動筆計算或者畫圖,有一定難度,可以深化所學內容。
(4分鐘)
此題既是對函數圖象畫法的復習又是對方程求解的深化。其中蘊含了數形結合思想。
(1分鐘)
鞏固作反比例函數圖象的步驟,預習下一節課內容
本節課通過學生自主探索,合作交流,自主畫圖,以認知規律為主線,以發展能力為目標,以從直觀感受到分析歸納為手段,培養學生的合情推理能力和積極的情感態度,促進良好的數學觀的形成。培養了學生的抽象思維能力,同時也向學生滲透了歸納類比,數形結合以及分類討論的數學思想方法。
由于此節課是動手畫圖,限于器材以及教學設備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學生一個范例,既可給學生思考也可有學習的空間。
在由圖象獲取性質的時候有一些不足,以后教課時要注意引導,使學生較快獲得有效信息,從而歸納出要得到的性質和結論。在這節課要多強調光滑曲線以及畫法。
(1)列表(取值的特殊與有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描點(描點的準確)
(3)連線(注意光滑曲線)
注:(1)x取絕對值相等符號相反的數值
(2)x取值要盡可能多,而且有代表性 三:練習
(3)連線時用光滑曲線從小到大依次連接
(4)圖象不與坐標軸相交
(1) 當 k0 時,兩支曲線分別位于第一、三象限,
(2) 當 k0 時,兩支曲線分別位于第二、四象限.
反比例數學教案(匯總18篇)篇十七
2.利用反比例函數的圖象解決有關問題.
1.經歷對反比例函數圖象的觀察、分析、討論、概括過程,會說出它的性質;。
2.探索反比例函數的圖象的性質,體會用數形結合思想解數學問題.
一、創設情境。
上節的練習中,我們畫出了問題1中函數的圖象,發現它并不是直線.那么它是怎么樣的曲線呢?本節課,我們就來討論一般的反比例函數(k是常數,k0)的圖象,探究它有什么性質.
二、探究歸納。
1.畫出函數的圖象.
分析畫出函數圖象一般分為列表、描點、連線三個步驟,在反比例函數中自變量x0.
解1.列表:這個函數中自變量x的取值范圍是不等于零的一切實數,列出x與y的對應值:
2.描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支.這兩個分支合起來,就是反比例函數的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數的圖象(學生動手畫反比函數圖象,進一步掌握畫函數圖象的步驟).
學生討論、交流以下問題,并將討論、交流的結果回答問題.
1.這個函數的圖象在哪兩個象限?和函數的圖象有什么不同?
2.反比例函數(k0)的圖象在哪兩個象限內?由什么確定?
(2)當k0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
注1.雙曲線的兩個分支與x軸和y軸沒有交點;。
2.雙曲線的兩個分支關于原點成中心對稱.
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮上的時間少.
在問題2中反映了在面積一定的情況下,飼養場的一邊越長,另一邊越小.
三、實踐應用。
例1若反比例函數的圖象在第二、四象限,求m的值.
分析由反比例函數的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值.
解由題意,得解得.
例2已知反比例函數(k0),當x0時,y隨x的.增大而增大,求一次函數y=kx-k的圖象經過的象限.
分析由于反比例函數(k0),當x0時,y隨x的增大而增大,因此k0,而一次函數y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方.
解因為反比例函數(k0),當x0時,y隨x的增大而增大,所以k0,所以一次函數y=kx-k的圖象經過一、二、四象限.
例3已知反比例函數的圖象過點(1,-2).
(1)求這個函數的解析式,并畫出圖象;。
(2)由點a在反比例函數的圖象上,易求出m的值,再驗證點a關于兩坐標軸和原點的對稱點是否在圖象上.
解(1)設:反比例函數的解析式為:(k0).
而反比例函數的圖象過點(1,-2),即當x=1時,y=-2.
所以,k=-2.
(2)點a(-5,m)在反比例函數圖象上,所以,
點a的坐標為.
點a關于x軸的對稱點不在這個圖象上;。
點a關于y軸的對稱點不在這個圖象上;。
點a關于原點的對稱點在這個圖象上;。
(1)求m的值;。
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當-3時,求此函數的最大值和最小值.
解(1)由反比例函數的定義可知:解得,m=-2.
(2)因為-20,所以反比例函數的圖象在第二、四象限內,在各象限內,y隨x的增大而增大.
(3)因為在第個象限內,y隨x的增大而增大,
所以當x=時,y最大值=;。
當x=-3時,y最小值=.
所以當-3時,此函數的最大值為8,最小值為.
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數關系式;。
(2)寫出自變量x的取值范圍;。
(3)畫出函數的圖象.
解(1)因為100=5xy,所以.
(2)x0.
(3)圖象如下:
說明由于自變量x0,所以畫出的反比例函數的圖象只是位于第一象限內的一個分支.
四、交流反思。
本節課學習了畫反比例函數的圖象和探討了反比例函數的性質.
1.反比例函數的圖象是雙曲線(hyperbola).
(2)當k0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
五、檢測反饋。
1.在同一直角坐標系中畫出下列函數的圖象:
(1);(2).
2.已知y是x的反比例函數,且當x=3時,y=8,求:
(1)y和x的函數關系式;。
(2)當時,y的值;。
(3)當x取何值時,?
3.若反比例函數的圖象在所在象限內,y隨x的增大而增大,求n的值.
4.已知反比例函數經過點a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若圖象上有兩點p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小.
反比例數學教案(匯總18篇)篇十八
1.能運用反比例函數的相關知識分析和解決一些簡單的實際問題。
2.在解決實際問題的過程中,進一步體會和認識反比例函數是刻
畫現實世界中數量關系的一種數學模型。
運用反比例函數解決實際問題
運用反比例函數解決實際問題
一、情景創設
反比例函數在生活、生產實際中也有著廣泛的應用。
例如:在矩形中s一定,a和b之間的關系?你能舉例嗎?
二、例題精析
例1、見課本73頁
例2、見課本74頁
四、課堂練習課本p74練習1、2題
五、課堂小結反比例函數的應用
六、課堂作業課本p75習題9.3第1、2題
七、教學反思
更多初二數學教案,請點擊