教學工作計劃需要教師對教材內容進行分析和解讀,確定教學的重點和難點。現在就讓我們來看一些教學工作計劃的范文吧,希望能對大家制定教學計劃有所幫助。
七年級數學有理數的乘方教案(通用17篇)篇一
1、知識目標:了解有理數乘法法則的合理性,掌握有理數的乘法法則,熟練運用有理數的法則進行準確運算。
2、能力目標:通過對問題的變式探索,培養自己觀察、分析、抽象、概括的能力。
3、情感目標:培養積極思考和勇于探索的精神,形成良好的學習習慣。
重點:有理數乘法運算法則的推導及熟練運用。
難點:有理數乘法運算中積的符號的確定。
1、在小學我們已經接觸了乘法,那什么叫乘法呢?
求幾個的運算,叫乘法。
一個數同0相乘,得0。
2、請你列舉幾道小學學過的乘法算式。
規定:向右為正,現在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:(+2)(+3)=。
問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘后蝸牛應在o點的()邊()cm處。
可以列式為:
問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規定:向右為正,現在之后為正。
3分鐘前蝸牛應在o點的()邊()cm處。
可以表示為:
2、觀察這四個式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正數乘正數積為__數:負數乘負數積為__數:
負數乘正數積為__數:正數乘負數積為__數:
乘積的絕對值等于各乘數絕對值的_____。
思考:當一個因數為0時,積是多少?
兩數相乘,同號得,異號得,并把絕對值。
任何數同0相乘,都得。
1、你能確定下列乘積的符號嗎?
37積的符號為;(—3)7積的符號為;
3(—7)積的`符號為;(—3)(—7)積的符號為。
2先閱讀,再填空:
(—5)x(—3)。同號兩數相乘。
(—5)x(—3)=+()得正。
5x3=15把絕對值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]計算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
請同學們仿照上述步驟計算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
讓我們來總結求解步驟:
兩個數相乘,應先確定積的,再確定積的。
1、小組口算比賽,看誰更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔細計算。,注意積的符號和絕對值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列說法錯誤的是()。
a、一個數同0相乘,仍得0。
b、一個數同1相乘,仍得原數。
c、如果兩個數的乘積等于1,那么這兩個數互為相反數。
d、一個數同—1相乘,得原數的相反數。
2、在—2,3,4,—5這四個數中,任意兩個數相乘,所得的積最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、計算下列各題:
(5)(—6)(—5)=;(6)(—5)(—6)=。
七年級數學有理數的乘方教案(通用17篇)篇二
理解有理數的概念,懂得有理數的兩種分類方法:會判別一個有理數是整數還是分數,是正數、負數還是零。
二、過程與方法。
經歷對有理數進行分類的探索過程,初步感受分類討論的思想。
三、情感態度與價值觀。
通過對有理數的學習,體會到數學與現實世界的緊密聯系。
教學重難點及突破。
在引入了負數后,本課對所學過的數按照一定的標準進行分類,提出了有理數的概念。分類是數學中解決問題的常用手段,通過本節課的學習,使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
教學準備。
用電腦制作動畫體現有理數的分類過程。
教學過程。
四、課堂引入。
2.舉例說明現實中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區別。
七年級數學有理數的乘方教案(通用17篇)篇三
2?乘方的結果叫做冪,相同的因數叫做底數,相同因數的個數叫做指數?
一般地,在an中,a取任意有理數,n取正整數?
應當注意,乘方是一種運算,冪是乘方運算的結果?當an看作a的n次方的結果時,也可以讀作a的n次冪。
例1計算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教師指出:2就是21,指數1通常不寫?讓三個學生在黑板上計算?
引導學生觀察、比較、分析這三組計算題中,底數、指數和冪之間有什么關系?
(1)模向觀察。
正數的任何次冪都是正數;負數的奇次冪是負數,偶次冪是正數;零的任何次冪都是零?
(2)縱向觀察。
互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等?
(3)任何一個數的偶次冪都是什么數?
任何一個數的偶次冪都是非負數?
你能把上述的結論用數學符號語言表示嗎?
當a0時,an0(n是正整數);
當a。
當a=0時,an=0(n是正整數)?
(以上為有理數乘方運算的符號法則)。
a2n=(-a)2n(n是正整數);
=-(-a)2n-1(n是正整數);
a2n0(a是有理數,n是正整數)?
例2計算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
讓三個學生在黑板上計算?
課堂練習。
計算:
(1),,,-,;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
讓學生回憶,做出小結:
1?乘方的有關概念?2?乘方的符號法則?3?括號的作用?
1?計算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4時,求下列各代數式的值:
4?當a是負數時,判斷下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5*?平方得9的數有幾個?是什么?有沒有平方得-9的有理數?為什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
七年級數學有理數的乘方教案(通用17篇)篇四
1.通過與溫度計的類比,了解數軸的概念,會畫數軸。
2.知道如何在數軸上表示有理數,能說出數軸上表示有理數的點所表示的數,知道任何一個有理數在數軸上都有唯一的點與之對應。
過程方法。
1.從直觀認識到理性認識,從而建立數軸概念。
2.通過數軸概念的學習,初步體會對應的思想、數形結合的思想方法。
3.會利用數軸解決有關問題。
情感態度。
通過對數軸的學習,體會到數形結合的思想方法,進而初步認識事物之間的聯系性。
【教學重點】。
1.數軸的概念。
2.能將已知數在數軸上表示出來,說出數軸上已知點所表示的數。
【教學難點】。
從直觀認識到理性認識,從而建立數軸的概念。
【情景引入】。
1.小明感冒了,醫生用體溫計測量了他的體溫,并說:“37.8度。”
提疑:醫生為什么通過體溫計就可以讀出任意一個人的體溫?
(體溫計上的刻度)。
2.我們再一起去看看12月時祖國各地的自然風光和溫度情況(電腦分別顯示黑龍江、焦作、海南三個城市美麗的自然風光,溫度分別為-10°c,0°c,20°c)。
提疑:那么要測量這種氣溫所需要的溫度計的刻度應該如何安排?需要用到哪些數?
(正數、零、負數)。
3.請嘗試畫出你想像中的溫度計,并和其他同學交流,注意交流時要發表自己的見解。然后提問:請找出一支溫度計從外觀上具有哪些不可缺少的特征?(組織學生討論交流)學生可能會從不同的角度回答,教師給予必要的引導,總結出與數軸相對應的特點,如形狀是直的、0刻度、單位刻度。(電腦動態演示,將溫度計水平放置,抽象得出數軸圖形表示有理數-10,0,20的過程)從而引出課題------數軸。
七年級數學有理數的乘方教案(通用17篇)篇五
學習目標:。
1、理解加減法統一成加法運算的意義.
2、會將有理數的加減混合運算轉化為有理數的加法運算.
3、培養學習數學的興趣,增強學習數學的信心.
教學方法:講練相結合。
教學過程。
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
記作+4.5千米—3.2千米+1.1千米—1.4千米。
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
2、你是怎么算出來的,方法是。
1、現在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
=(-20)+(+3)+(+5)+(-7)先把減法轉化為加法。
=-20+3+5-7再把加號記在腦子里,省略不寫。
可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
4、師生完整寫出解題過程。
1、解決引例中的問題,再比較前面的方法,你的感覺是。
2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
1、小結:說說這節課的收獲。
2、p241、2。
3、計算。
1)27—18+(—7)—322)。
五、作業。
1、p2552、p26第8題、14題。
七年級數學有理數的乘方教案(通用17篇)篇六
三、情感態度與價值觀。
體會數學與現實生活的聯系,提高學生學習數學的興趣、
教學重點、難點與關鍵。
1、重點:有理數加減法統一為加法運算,掌握有理數加減混合運算、
2、難點:省略括號和加號的加法算式的運算方法、
投影儀、
四、教學過程。
一、復習提問,引入新課。
1、敘述有理數的加法、減法法則、
2、計算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我們已學習了有理數加、減法的運算,今天我們來研究怎樣進行有理數的加減混合運算、
六、鞏固練習。
1、課本第24頁練習、
(1)題是已寫成省略加號的代數和,可運用加法交換律、結合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)題運用加減混合運算律,同號結合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)題先把加減混合運算統一為加法運算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括號和加號)。
=—16+10。
=—6。
七、課堂小結。
八、作業布置。
1、課本第25頁第26頁習題1、3第5、6、13題、
九、板書設計:
第四課時。
1、把有理數加減混合運算轉化為加法后,常用加法交換律和結合律使計算簡便、
歸納:加減混合運算可以統一為加法運算、
用式子表示為a+b—c=a+b+(—c)、
2、隨堂練習。
3、小結。
4、課后作業。
十、課后反思。
本課教學反思。
本節課主要采用過程教案法訓練學生的聽說讀寫。過程教案法的理論基礎是交際理論,認為寫作的過程實質上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學生指導,更正其錯誤,幫助學生完成寫作各階段任務。課堂是寫作車間,學生與教師,學生與學生彼此交流,提出反饋或修改意見,學生不斷進行寫作,修改和再寫作。在應用過程教案法對學生進行寫作訓練時,學生從沒有想法到有想法,從不會構思到會構思,從不會修改到會修改,這一過程有利于培養學生的寫作能力和自主學習能力。學生由于能得到教師的及時幫助和指導,所以,即使是英語基礎薄弱的同學,也能在這樣的環境下,寫出較好的作文來,從而提高了學生寫作興趣,增強了寫作的自信心。
這個話題很容易引起學生的共鳴,比較貼近生活,能激發學生的興趣,在教授知識的同時,應注意將本單元情感目標融入其中,即保持樂觀積極的生活態度,同時要珍惜生活的點點滴滴。在教授語法時,應注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡能為后續學習打下基礎。此教案設計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
在此教案過程中,應注重培養學生的自學能力,通過輔導學生掌握一套科學的學習方法,才能使學生的學習積極性進一步提高。再者,培養學生的學習興趣,增強教案效果,才能避免在以后的學習中產生兩極分化。
在教案中任然存在的問題是,學生在“說”英語這個環節還有待提高,大部分學生都不愿意開口朗讀課文,所以復述課文便尚有難度,對于這一部分學生的學習成績的提高還有待研究。
七年級數學有理數的乘方教案(通用17篇)篇七
2、乘方的結果叫做冪,相同的因數叫做底數,相同因數的個數叫做指數?
一般地,在an中,a取任意有理數,n取正整數?
應當注意,乘方是一種運算,冪是乘方運算的結果?當an看作a的n次方的結果時,也可以讀作a的n次冪。
例1計算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教師指出:2就是21,指數1通常不寫?讓三個學生在黑板上計算?
引導學生觀察、比較、分析這三組計算題中,底數、指數和冪之間有什么關系?
(1)模向觀察。
正數的任何次冪都是正數;負數的奇次冪是負數,偶次冪是正數;零的任何次冪都是零?
(2)縱向觀察。
互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等?
(3)任何一個數的偶次冪都是什么數?
任何一個數的偶次冪都是非負數?
你能把上述的結論用數學符號語言表示嗎?
當a0時,an0(n是正整數);
當a。
當a=0時,an=0(n是正整數)?
(以上為有理數乘方運算的符號法則)。
a2n=(-a)2n(n是正整數);
=-(-a)2n-1(n是正整數);
a2n0(a是有理數,n是正整數)?
例2計算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
讓三個學生在黑板上計算?
課堂練習。
計算:
(1),,,-,;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
讓學生回憶,做出小結:
1、乘方的有關概念?
2、乘方的符號法則?3?括號的作用?
1、計算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4時,求下列各代數式的值:
4、當a是負數時,判斷下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5、平方得9的數有幾個?是什么?有沒有平方得-9的有理數?為什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
七年級數學有理數的乘方教案(通用17篇)篇八
2.培養學生觀察、分析、歸納及運算能力。
三、教學重點。
四、教學難點。
五、教學用具。
三角尺、小黑板、小卡片。
六、課時安排。
1課時。
七、教學過程。
(一)、從學生原有認知結構提出問題。
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數與和,求另一個加數,在小學里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數的減法,減法是加法的逆運算。
(二)、師生共同研究有理數減法法則。
問題1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教師引導學生發現:兩式的結果相同,(更多內容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的結果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導學生歸納出有理數減法法則:
減去一個數,等于加上這個數的。相反數。
教師強調運用此法則時注意“兩變”:一是減法變為加法;二是減數變為其相反數。減數變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數減法算式,引導學生發現:
在小學里學習的減法,差總是小于被減數,在有理數減法中,差不一定小于被減數了,只要減去一個負數,其差就大于被減數。
閱讀課本63頁例3。
(四)、小結。
1.教師指導學生閱讀教材后強調指出:
由于把減數變為它的相反數,從而減法轉化為加法。有理數的加法和減法,當引進負數后就可以統一用加法來解決。
2.不論減數是正數、負數或是零,都符合有理數減法法則。在使用法則時,注意被減數是永不變的。
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數減法解下列問題。
八、布置課后作業:
課本習題2.6知識技能的2、3、4和問題解決1。
九、板書設計。
2.5有理數的減法。
(一)知識回顧(三)例題解析(五)課堂小結。
例1、例2、例3。
(二)觀察發現(四)課堂練習練習設計。
十、課后反思。
七年級數學有理數的乘方教案(通用17篇)篇九
2.內容解析。
有理數的乘法是繼有理數的加減法之后的又一種基本運算.有理數乘法既是有理數運算的深入,又是進一步學習有理數的除法、乘方的基礎,對后續代數學習是至關重要的.
與有理數加法法則類似,有理數乘法法則也是一種規定,給出這種規定要遵循的原則是“使原有的運算律保持不變”.本節課要在小學已掌握的乘法運算的基礎上,通過合情推理的方式,得到“要使正數乘正數(或0)的規律在正數乘負數、負數乘負數時仍然成立,那么運算結果應該是什么”的結論,從而使學生體會乘法法則的合理性.與加法法則一樣,正數乘負數、負數乘負數的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數相乘,因此,這里關鍵是要規定好含有負數的兩數相乘之積的符號,這是有理數乘法的本質特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學重點是兩個有理數相乘的符號法則.
二、目標及其解析。
1.目標。
(1)理解有理數乘法法則,能利用有理數乘法法則計算兩個數的乘法.
(2)能說出有理數乘法的符號法則,能用例子說明法則的合理性.
2.目標解析。
達成目標(1)的標志是學生在進行兩個有理數乘法運算時,能按照乘法法則,先考慮兩乘數的符號,再考慮兩乘數的絕對值,并得出正確的結果.
達成目標(2)的標志是學生能通過具體例子說明有理數乘法的符號法則的歸納過程.
三、教學問題診斷分析。
有理數的乘法與小學學習的乘法的區別在于負數參與了運算.本課要以正數、0之間的運算為基礎,構造一組有規律的算式,先讓學生從算式左右各數的符號和絕對值兩個角度觀察這些算式的共同特點并得出規律,再以問題“要使這個規律在引入負數后仍然成立,那么應有……”為引導,讓學生思考在這樣的規律下,正數乘負數、負數乘正數、兩個負數相乘各應有什么運算結果,并從積的符號和絕對值兩個角度總結出規律,進而給出有理數乘法法則,在這個過程中體會規定的合理性.上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規律等,都會出現困難.為了解決這些困難,教師應該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規律”的要求.
本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規律.
四、教學過程設計。
教師引導學生從有理數分類的角度考慮,區分出有理數乘法的情況有:正數乘正數、正數與0相乘、正數乘負數、負數乘正數、負數乘負數.
設計意圖:有理數分為正數、零、負數,由此引出兩個有理數相乘的幾種情況,既復習有關知識,為下面的教學做好準備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發現什么規律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應該從哪幾個角度去觀察、發現規律?
如果學生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數3.
(2)其他兩個數有什么變化規律?——隨著后一個乘數逐次遞減1,積逐次遞減3.
設計意圖:構造這組有規律的算式,為通過合情推理,得到正數乘負數的法則做準備.通過追問、提示,使學生知道“如何觀察”“如何發現規律”.
教師:要使這個規律在引入負數后仍然成立,那么,3×(-1)=-3,這是因為后一乘數從0遞減1就是-1,因此積應該從0遞減3而得-3.
追問2:根據這個規律,下面的兩個積應該是什么?
3×(-2)=,
3×(-3)=.
練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規律.
設計意圖:讓學生自主構造算式,加深對運算規律的理解.
先讓學生觀察、敘述、補充,教師再總結:都是正數乘負數,積都為負數,積的.絕對值等于各乘數絕對值的積.
設計意圖:先得到一類情況的結果,降低歸納概括的難度,同時也為后面的學習奠定基礎.
問題3觀察下列算式,類比上述過程,你又能發現什么規律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學生模仿正數乘負數的過程,自己獨立得出規律.
設計意圖:為得到負數乘正數的結論做準備;培養學生的模仿、概括的能力.
追問1:要使這個規律在引入負數后仍然成立,你認為下面的空格應各填什么數?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習:請你模仿上面的過程,自己構造出一組算式,并說出它的變化規律.
先讓學生觀察、敘述、補充,教師再總結:都是負數乘正數,積都為負數,積的絕對值等于各乘數絕對值的積.
追問3:正數乘負數、負數乘正數兩種情況下的結論有什么共性?你能把它概括出來嗎?
設計意圖:讓學生模仿已有的討論過程,自己得出負數乘正數的結論,并進一步概括出“異號兩數相乘,積的符號為負,積的絕對值等于各乘數絕對值的積”.既使學生感受法則的合理性,又培養他們的歸納思想和概括能力.
問題4利用上面歸納的結論計算下面的算式,你能發現其中的規律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規律填空,并說說其中有什么規律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設計意圖:由學生自主探究得出負數乘負數的結論.因為有前面積累的豐富經驗,學生能獨立完成.
問題5總結上面所有的情況,你能試著自己給出有理數乘法法則嗎?
學生獨立思考后進行課堂交流,師生共同完成,得出結論后再讓學生看教科書.
學生獨立思考、回答.如果有困難,可先讓學生看課本第29頁有理數乘法法則后面的一段文字.
設計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關鍵步驟.
例1計算:
(1)。
;(2)。
;(3)。
學生獨立完成后,全班交流.
教師說明:在(3)中,我們得到了。
=1.與以前學習過的倒數概念一樣,我們說。
與-2互為倒數.一般地,在有理數中仍然有:乘積是1的兩個數互為倒數.
追問:在(2)中,8和-8互為相反數.由此,你能說說如何得到一個數的相反數嗎?
設計意圖:本例既作為鞏固乘法法則,又引出了倒數的概念(因為這個概念很容易理解),同時說明了求一個數的相反數與乘-1之間的關系(反過來有-8=8×(―1)).
設計意圖:利用有理數乘法解決實際問題,體現數學的應用價值.
小結、布置作業。
請同學們帶著下列問題回顧本節課的內容:
(2)用有理數乘法法則進行兩個有理數的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數、0的乘法運算出發,歸納出正數乘負數的法則.
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設計意圖:引導學生從知識內容和學習過程兩個方面進行小結.
作業:教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
五、目標檢測設計。
1.判斷下列運算結果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2計算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
設計意圖:檢測學生對有理數乘法法則的理解情況.
七年級數學有理數的乘方教案(通用17篇)篇十
(1)正確理解乘方、冪、指數、底數等概念.
(2)會進行有理數乘方的運算.
2.過程與方法。
通過對乘方意義的理解,培養學生觀察、比較、分析、歸納、概括的能力,滲透轉化思想.
3.情感態度與價值觀。
培養探索精神,體驗小組交流、合作學習的重要性.
重、難點與關鍵。
1.重點:正確理解乘方的意義,掌握乘方運算法則.
2.難點:正確理解乘方、底數、指數的概念,并合理運算.
3.關鍵:弄清底數、指數、冪等概念,注意區別-an與(-a)n的意義.
教學過程。
一、復習提問。
1.幾個不等于零的有理數相乘,積的符號是怎樣確定的?
答:幾個不等于零的有理數相乘,積的符號由負因數的個數確定,當負因數的個數為奇數時,積為負;當負因數的個數為偶數時,積為正.值觀:體驗小組交流,合作學習的重要性。
七年級數學有理數的乘方教案(通用17篇)篇十一
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)。
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有-的新數。
七年級數學有理數的乘方教案(通用17篇)篇十二
本課(節)課題3.1認識直棱柱第1課時/共課時。
教學目標(含重點、難點)及。
1、了解多面體、直棱柱的有關概念.
2、會認直棱柱的側棱、側面、底面.。
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
教學重點與難點。
教學重點:直棱柱的有關概念.
教學難點:本節的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內容與環節預設、簡明設計意圖二度備課(即時反思與糾正)。
析:學生很容易回答出更多的答案。
師:(繼續補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學們再討論一下,能否把自己的語言轉化為數學語言。
學生活動:分小組討論。
說明:真正體現了“以生為本”。讓學生在主動探究中發現知識,充分發揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區別)。
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側棱互相平行且相等。
4.學以至用。
出示例題。(先請學生單獨考慮,再作講解)。
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養成發現問題,解決問題的創造性思維習慣)。
最后完成例題中的“想一想”
5.鞏固練習(學生練習)。
完成“課內練習”
師:我們這節課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計。
作業布置或設計作業本及課時特訓。
七年級數學有理數的乘方教案(通用17篇)篇十三
二、難點:正確進行有理數的乘除運算。
預習導學。
一、創設情景,談話導入。
我們已經學習了有理數的乘除法,同學們歸納,總結一下有理數的乘法法則以及乘法運算律。
二、精講點撥質疑問難。
根據預習內容,同學們回答以下問題:
(3)0與任何自然數相乘,得____。
(1)乘法交換律:ab=_________。
(2)乘法結合律:(ab)c=_______。
(3)乘法分配律:(a+b)c=________。
3、有理數的除法法則:
除以一個不等于0的數,等于乘這個數的__________。
比較有理數的乘法,除法法則,發現_________可能轉化為__________。
七年級數學有理數的乘方教案(通用17篇)篇十四
3.注意培養學生的運算能力.。
教學重點和難點。
重點:有理數的混合運算.。
難點:準確地掌握有理數的運算順序和運算中的符號問題.。
課堂教學過程設計。
一、從學生原有認知結構提出問題。
1.計算(五分鐘練習):
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5).。
加法交換律:a+b=b+a;
加法結合律:(a+b)+c=a+(b+c);
乘法交換律:ab=ba;
乘法結合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、講授新課。
1.在只有加減或只有乘除的同一級運算中,按照式子的順序從左向右依次進行.。
審題:(1)運算順序如何?
(2)符號如何?
七年級數學有理數的乘方教案(通用17篇)篇十五
3+4表示3和+4的代數和。
等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。
4、先把正數與負數分別相加,可以使運算簡便。
5、在交換加數的位置時,要連同前面的符號一起交換。如。
12-5+7應變成12+7-5,而不能變成12-7+5。
教學設計示例一。
一、素質目標。
(一)知識教學點。
1.了解:代數和的概念.。
2.理解:有理數加減法可以互相轉化.。
(二)能力訓練點。
培養學生的口頭表達能力及計算的準確能力.。
(三)德育滲透點。
(四)美育滲透點。
七年級數學有理數的乘方教案(通用17篇)篇十六
2?培養學生準確地運算能力,并適當地滲透特殊與一般的辨證關系的思想。
重點和難點:正確地求出代數式的值。
一、從學生原有的認識結構提出問題。
1?用代數式表示:(投影)。
(1)a與b的和的平方;(2)a,b兩數的平方和;。
(3)a與b的和的50%?
2?用語言敘述代數式2n+10的意義?
3?對于第2題中的代數式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)。
若學校有15個班(即n=15),則添置排球總數為多少個?若有20個班呢?
二、師生共同研究代數式的值的意義。
2?結合上述例題,提出如下幾個問題:
(1)求代數式2x+10的值,必須給出什么條件?
(2)代數式的值是由什么值的確定而確定的?
(3)求代數式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?
下面教師結合例題來引導學生歸納,概括出上述問題的答案?(教師板書例題時,應注意格式規范化)。
例1當x=7,y=4,z=0時,求代數式x(2x-y+3z)的值?
解:當x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)。
=7×(14-4)。
=70?
注意:如果代數式中省略乘號,代入后需添上乘號。
七年級數學有理數的乘方教案(通用17篇)篇十七
3.進一步感悟“轉化”的思想。
把有理數的加減法混合運算統一為加法運算。
省略負數前面的加號的有理數加法,運用運算律交換加數位置時,符號不變。
根據有理數的減法法則,有理數的加減速混合運算可以統一為加法運算。
1、完成下列計算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。
歸納:根據有理數的減法法則,有理數的`加減混合運算可以統一為運算;
省略負數前面的加號和()后的形式是______________________;
展示交流。
1、把下列運算統一成加法運算:
2、將下列有理數加法運算中,加號省略:
(1)12+(-8)=________________;
3、將下列運算先統一成加法,再省略加號:
=___[]______________________。
4、仿照本p37例6,完成下列計算:
盤點收獲。
個案補充。
1.計算:
本p39習題2。5第6題(1)、(3)、(5),第7題。