通過使用教案模板,教師可以更加有條理地展開教學過程,提高教學效果。接下來,我們將介紹一些教案模板的優點和不足之處,希望能夠促使教師們更好地進行教學設計。
七年級數學多邊形的內角和說課稿(通用19篇)篇一
《多邊形內角和》這節課,我基本上完成了教學任務,教學目標基本達成,《多邊形內角和》教學反思。學生明確了轉化的思想是數學最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內角和,并且能夠運用多邊形的內角和公式解決相關問題。同時也有幾個地方引起了我深深的思考。
首先,在這節課的設計中,我大膽的嘗試并使用網絡教學。在我最初的設計過程中,按照常規的方法引導學生先用分割的`方法得到四邊形內角和,再探究多邊形的內角和。但是網絡教學教學就成為一種形式,沒有充分的發揮它的作用,效果也不是很好。后來改為不做任何方法的指導,采用完全開放的探究,每步探究先讓學生嘗試,把學生推到主動位置,放手讓學生自己學習,教學過程主要靠學生自己去完成,盡可能做到讓學生在“活動”中學習,在“主動”中發展,在“合作”中增知,在“探究”中創新。要充分體現學生學習的自主性:規律讓學生自主發現,方法讓學生自主尋找,思路讓學生自主探究,問題讓學生自主解決。課前我很擔心,但事實說明,這種探究才是真正的讓學生去嘗試,去挑戰。因此,在課堂教學中選用探究式,可以讓學生在自主學習中探究,在質疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學反思《多邊形內角和》教學反思》。總之我對探究課有了更深刻的理解。
這節課的第一個環節:引入,我認為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學生的注意力。這樣這節課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調動了學生的情緒,打動學生的心靈,形成良好的課堂氣氛切人口。第三個環節:分層練習。充分發揮了網絡課的優勢,真正做到了分層。
其次,在探究這個環節中,有一個關鍵的地方處理的很不到位。即:當一個學生提出分割方法時,這時沒有及時把握住這個時機,讓更多的學生去嘗試這種方法,而是讓他自己把所得到的結論直接告訴大家,因此沒有讓更多的學生去體驗轉化的思想,我認為這節課最大的敗筆就在于此。課下我反復的`思考出現問題的原因,是因為對學生估計的不足造成的。我總認為,在教師不指導的情況下,不會有學生想到分割這種方法,當課堂上學生出現這種方法時,我就有點激動,順著學生的思路走了,而忽視了大多數。因此,在備課時一定要更為細致的研究學生可能出現的情況,在上課時才能應對自如。
總之,這節課我不是很滿意,細分析,偶然當中也包含著必然。新課標要求數學教學過程中要注重學生學習的過程,而知識的學習是一個建構過程,教師通過以組織者、合作者、和引導者的身份,根據學生的具體情況,對教材進行再加工,有創造地設計教學過程,在教學設計中要求新求變。用“新”和“變”來激發學生學習數學的欲望和興趣。根據不同的教學內容選擇不同的教學模式。因為只有這樣,課堂教學才能煥發出生機和活力。教師在這個過程中要為學生營造一個積極的、寬松的教學氛圍。所以,要做一個新時代的教師,除具備一定的專業知識外,還要具備領導才能,能夠駕御整個課堂。發現了自己的不足就意味著自己的進步。在今后的教學中,我會更加努力,讓我的每一位學生在我的每一節課上都能夠有新的收獲。
將本文的word文檔下載到電腦,方便收藏和打印。
七年級數學多邊形的內角和說課稿(通用19篇)篇二
學情分析:
學生已經學過三角形的內角和定理的知識基礎,并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導學生利用分類、數形結合的思想,加強對數學知識的應用,發展學生合情合理的推理能力和語言表達能力。
教學目標:
1.知識與技能:運用三角形內角和定理來推證多邊形內角和公式,掌握多邊形的內角和的計算公式。
2.過程與方法:經理探究多邊形內角和計算方法的過程,培養學生的合作交流的意識。
3.情感態度與價值觀:感受數學化歸的思想和實際應用的價值,同時培養學生善于發現,積極探究,合作創新的學習態度。
教學重點:
七年級數學多邊形的內角和說課稿(通用19篇)篇三
《多邊形內角和》這節課,我基本上完成了教學任務,教學目標基本達成,《多邊形內角和》教學反思。學生明確了轉化的思想是數學最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內角和,并且能夠運用多邊形的內角和公式解決相關問題。同時也有幾個地方引起了我深深的思考。
首先,在這節課的設計中,我大膽的嘗試并使用網絡教學。在我最初的設計過程中,按照常規的方法引導學生先用分割的方法得到四邊形內角和,再探究多邊形的內角和。但是網絡教學教學就成為一種形式,沒有充分的發揮它的作用,效果也不是很好。后來改為不做任何方法的'指導,采用完全開放的探究,每步探究先讓學生嘗試,把學生推到主動位置,放手讓學生自己學習,教學過程主要靠學生自己去完成,盡可能做到讓學生在“活動”中學習,在“主動”中發展,在“合作”中增知,在“探究”中創新。要充分體現學生學習的自主性:規律讓學生自主發現,方法讓學生自主尋找,思路讓學生自主探究,問題讓學生自主解決。課前我很擔心,但事實說明,這種探究才是真正的讓學生去嘗試,去挑戰。因此,在課堂教學中選用探究式,可以讓學生在自主學習中探究,在質疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學反思《多邊形內角和》教學反思》??傊覍μ骄空n有了更深刻的理解。
這節課的第一個環節:引入,我認為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學生的注意力。這樣這節課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調動了學生的情緒,打動學生的心靈,形成良好的課堂氣氛切人口。第三個環節:分層練習。充分發揮了網絡課的優勢,真正做到了分層。
其次,在探究這個環節中,有一個關鍵的地方處理的很不到位。即:當一個學生提出分割方法時,這時沒有及時把握住這個時機,讓更多的學生去嘗試這種方法,而是讓他自己把所得到的結論直接告訴大家,因此沒有讓更多的學生去體驗轉化的思想,我認為這節課最大的敗筆就在于此。課下我反復的思考出現問題的原因,是因為對學生估計的不足造成的。我總認為,在教師不指導的情況下,不會有學生想到分割這種方法,當課堂上學生出現這種方法時,我就有點激動,順著學生的思路走了,而忽視了大多數。因此,在備課時一定要更為細致的研究學生可能出現的情況,在上課時才能應對自如。
總之,這節課我不是很滿意,細分析,偶然當中也包含著必然。新課標要求數學教學過程中要注重學生學習的過程,而知識的學習是一個建構過程,教師通過以組織者、合作者、和引導者的身份,根據學生的具體情況,對教材進行再加工,有創造地設計教學過程,在教學設計中要求新求變。用“新”和“變”來激發學生學習數學的欲望和興趣。根據不同的教學內容選擇不同的教學模式。因為只有這樣,課堂教學才能煥發出生機和活力。教師在這個過程中要為學生營造一個積極的、寬松的教學氛圍。所以,要做一個新時代的教師,除具備一定的專業知識外,還要具備領導才能,能夠駕御整個課堂。發現了自己的不足就意味著自己的進步。在今后的教學中,我會更加努力,讓我的每一位學生在我的每一節課上都能夠有新的收獲。
七年級數學多邊形的內角和說課稿(通用19篇)篇四
x老師在整節課中一直是學生學習活動的組織者、指導者和合作者,而學生則是一個發現者、探索者,有效地發揮他們的學習主體作用,是一節成功的新授課。
在本節課上x老師有效引導學生通過類比三角形的內角和,結合圖像引導學生進行探索多邊形的內角和,及時將發散思維進行集中化,培養學生及時思考歸納方法的習慣,都給我留下了深刻的印象。以下是我對本節課的一些體會。
1。利用已有知識,滲透類比思想及轉化思想(化未知為已知,化四邊形的問題為三角形的問題)。
本節課教學設計,充分尊重學生的'已有經驗,密切聯系了學生的已有的舊知識,巧妙地利用學生熟悉的三角形的內角和知識,產生正向的知識遷移,使學生感覺到所學的新知識與以前所學的舊知識是有很大聯系的,兩者之間有很多相同點,更加深了他們對兩者之間的不同點的關注,這對于解決這節課的學習,起到了潛移默化的作用,同時也增進學習數學的積極情感。
2。巧妙引導,在探究中構建新知。
本節課的教學設計的核心部分就是多邊形內角和的探究,新課程理念下的數學教學,數學知識的教育已經不是教學的全部內容了,如何在知識教育的同時培養學生的觀察、探究、合作、歸納等方面的能力才是新課程改革的主導方向,這節課的教學設計在這一方面做了良好的嘗試,并完美的呈現。多邊形的內角和公式并不是老師直接給出或是由老師的推導出來的,老師通過組織學生分組探究,交流,提問,驗證等形式,由學生自主地歸納出多邊形的內角和公式,利用這種方法學生既可以獲得相關的數學知識,同時也能培養出相應的數學技能,這也正是新課標的要求。也是整節課的精彩所在。
3。尊重學生,并適時的對學生進行情感教育。
在課上我們看到教師在盡量做到讓每個學生都有表現自己的機會,讓學生在數學活動中獲得到一種積極的成功體驗的同時不忘對學生進行情感教育。如在本節課即將結束之時問學生:“你們認為本節課誰最值得我們學習?”既是教師對學生的肯定,也是教師對學生的希望。因此課堂上教師對學生進行的適時且有效的情感教育,這對學生的心理成長和學習都有很大幫助。
七年級數學多邊形的內角和說課稿(通用19篇)篇五
在上周四下午因12學時到二十五中培訓,有幸聽到林老師的課。
環節一:探究多邊形內角和性質,用時22分鐘。學生從多方面探究多邊形內角和的規律,有的學生從一個頂點出發畫對角對角線,把多邊形分成(n-2)個三角形,內角和為(n-2)×180;有的學生從多邊形的一邊上取點與多邊形各頂點連結,分成(n-1)個三角形,內角和為(n-1)×180-180,最后化為(n-2)×180;也有的.學生從多邊形內部任意取一個點與多邊形各頂點連結,分成n個三角形,內角和為n×180-360,最后也能化為(n-2)×180;殊圖同歸。這一環節精彩之處是:在學生探究五邊形內角和時,有的學生不按老師的常理出牌,把五邊形分成一個三角形和一個四邊形來計算;然后在探究六邊形的內角和時,就分成一個三角形和一個五邊形,依此類推。
環節二:探究多邊形外角和性質,用時7分鐘。與環節一相似,也是讓學生各抒已見。探究出多邊形性質。
由環節一、二教師指出:找規律的方法,從特殊到一般。
環節三:兩個性質的鞏固練習。
有一道題是這樣的:一個多邊形的每個內角都是144度,求這個多邊形是幾邊形。如果此題不留給學生思考和發言的機會,按教師的常理思考會用內角和性質:設多邊形為n邊形,再由(n-2)×180/n=144。再求出n。精彩之處:學生竟然用了外角和性質,先求出每一個外角為180-144=36,再用360÷36=10從而得出多邊形為10邊形,學生的思路和方法與老師想的不一致而且容易計算。
環節四:書上例題解答,教師還是依然放手讓學生來完成。
學生一解答如同書上解答。
學生二的解答方案讓在坐的老師大吃一驚,竟然會在原六邊形的一組對邊上任意連結一條線段把原六邊形分成兩個五邊形,根據五邊形的內角和是540,兩直線平行,同旁內角互補,快速就能求出所求三個角這和為540-180=360。太精彩了。
據統計:班級人數36人,學生回答問題達28人次,學生的參與度很高,學生學習熱情非我的學生能比。
給我的啟示:多給學生探究和思考的機會,他將會還你一個意想不到的精彩。
七年級數學多邊形的內角和說課稿(通用19篇)篇六
李xx老師由窗戶形狀的引入過渡到由多種多邊形組成的古代窗戶,然后由熟悉的三角形到不熟悉的多邊形的畫一畫,描一描,新舊知識過度自然;在學生找出不同邊數的圖形后,自然引入課題;在認識了四邊形后,隨即就讓學生找出一組圖形的四邊形,這種隨即鞏固練習的方式強化了四邊形的特點,加深學生對四邊形認識的印象,新授、練習之間的轉換毫無破綻,非常自然;在老師的引導下,學生依次認識四邊形、五邊形、六邊形等,看似順其自然,其實都是老師的精心設計。練習的形式多種多樣,由淺入深。如,先是數生活中的多邊形有幾條邊,然后讓學生自己數作業紙上的多邊形,接著讓學生動手操作,以及最后的“你能找出幾個四邊形”,內容層層深入,越來越有思考性。
皮亞杰指出:“傳統。
教學。
的特點,就在于往往是口頭講解,而不是從實際操作開始數學教學?!薄白觥本褪亲寣W生動手實踐,在實踐中體驗數學。通過實踐活動,可以使學生獲得大量的感性知識,同時有助于提高學生的學習興趣,激發求知欲。對于動作思維占優勢的小學生來說,“聽過了,就忘記了;看過了,就明白了;做過了,就理解了?!边@就要求我們善于用實踐的眼光處理教材內容,力求把教材內容設計成物質化活動,讓學生在“做”中體驗數學。李xx老師在教學過程中,不是僅憑一張紙、一支筆去學習新知識。她讓學生不僅僅在感官上去感受這些圖形的特征,而且讓學生在課堂上動手實踐操作,對于低年級學生來講,動手操作的活動教師比較難操作,稍不到位就容易產生課堂小混亂的`現象,但李老師在課前做了充分的準備,課堂的動手操作環節井然有序。
活動一:擺一擺。學習了多邊形,學生能夠根據邊數的多少判斷是什么多邊形,而讓學生自己用小棒擺一個多邊形,首先要考慮自己擺哪種多邊形,需要幾根小棒,怎樣擺。李xx老師充分信任學生,鼓勵學生,放手讓學生去創造多邊形,給學生提供了廣闊的創造空間。在反饋學生操作時發現大多數學生能根據自己選定的多邊形去選擇選用幾根小棒,即幾邊形就用幾根小棒,但也發現個別學生能用2根甚至三根作為多邊形的一條邊,教師順勢引出問題:擺這個多邊形至少需要幾根小棒?教師這個環節的設計得非常巧妙,讓學生在操作中明白幾邊形至少需要幾根小棒。
活動二:折一折,剪一剪,認一認。教師先讓學生折一個三角形,然后根據折痕剪下三角形,最后認一認剩下的是什么圖形,這個環節的設計讓學生知道根據同樣的要求,由于操作方式不一樣,所得到的結果可能具有多樣性。這讓學生在做中感受圖形的變換和聯系,提高實際操作能力和觀察能力。從而讓學生在充分而多樣的數學體驗中學會思維,形成觀念。
眾所周知,能否調動學生學習的主動性是提高教學效果的關鍵。學生只有在親身經歷或體驗一種學習過程時,其聰明才智才能得以發揮出來。教學的本質不僅僅是知識的“傳授”,而是讓學生在教學的情境中去體驗、探索、思考。在教學中,李xx老師只是以一個組織者、合作者的身份出現,完全放手讓學生自己去獨立探索,再組織引導學生合作交流。充分尊重學生,在課堂中盡量給學生創造較多的討論、分析的機會,讓學生根據自身的特點,自己選擇解決問題的策略,使學生在知識方面互相補充,在學習方法上互相借鑒,充分發揮集體智慧,在愉快地氣氛中培養學生良好地合作交流能力。讓他們享受自主的快樂。
下面提出我的一些看法和大家共同商討。
1、教師的課堂語言還可以再進行推敲,能再簡練些就更好。
2、在處理學生作業上,教師還需動些腦筋。如,最后數有幾個四邊形時,在統計有哪些小朋友數出有9個圖形時,有的同學不是9個也舉手,可以在出線正確答案時就統計,這樣就避免魚目混珠的現象。
七年級數學多邊形的內角和說課稿(通用19篇)篇七
林老師在整節課中一直是學生學習活動的組織者、指導者和合作者,而學生則是一個發現者、探索者,有效地發揮他們的學習主體作用,是一節成功的新授課。
在本節課上林老師有效引導學生通過類比三角形的內角和,結合圖像引導學生進行探索多邊形的內角和,及時將發散思維進行集中化,培養學生及時思考歸納方法的習慣,都給我留下了深刻的印象。以下是我對本節課的一些體會。
1.利用已有知識,滲透類比思想及轉化思想(化未知為已知,化四邊形的問題為三角形的問題)。
本節課教學設計,充分尊重學生的已有經驗,密切聯系了學生的已有的舊知識,巧妙地利用學生熟悉的三角形的內角和知識,產生正向的知識遷移,使學生感覺到所學的新知識與以前所學的舊知識是有很大聯系的,兩者之間有很多相同點,更加深了他們對兩者之間的不同點的關注,這對于解決這節課的學習,起到了潛移默化的作用,同時也增進學習數學的積極情感。
2.巧妙引導,在探究中構建新知。
本節課的教學設計的核心部分就是多邊形內角和的探究,新課程理念下的數學教學,數學知識的教育已經不是教學的全部內容了,如何在知識教育的同時培養學生的觀察、探究、合作、歸納等方面的能力才是新課程改革的主導方向,這節課的教學設計在這一方面做了良好的嘗試,并完美的呈現。多邊形的內角和公式并不是老師直接給出或是由老師的推導出來的,老師通過組織學生分組探究,交流,提問,驗證等形式,由學生自主地歸納出多邊形的內角和公式,利用這種方法學生既可以獲得相關的'數學知識,同時也能培養出相應的數學技能,這也正是新課標的要求。也是整節課的精彩所在。
3.尊重學生,并適時的對學生進行情感教育。
在課上我們看到教師在盡量做到讓每個學生都有表現自己的機會,讓學生在數學活動中獲得到一種積極的成功體驗的同時不忘對學生進行情感教育。如在本節課即將結束之時問學生:“你們認為本節課誰最值得我們學習?”既是教師對學生的肯定,也是教師對學生的希望。因此課堂上教師對學生進行的適時且有效的情感教育,這對學生的心理成長和學習都有很大幫助。
七年級數學多邊形的內角和說課稿(通用19篇)篇八
從教材的編排上,本節課作為第八章的第三節是承上啟下的一節,在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環環相扣,前面的知識為后邊的知識做了鋪墊,知識聯系性比較強,特別是教材中設計了一些"想一想""試一試""做一做"等內容,體現了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經歷探索,猜想,歸納等過程,發展了學生的合情推理能力。
學生上節課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節內容的知識條件已經成熟,學生參加探索活動的熱情已經具備,因此把這節課設計成一節探索活動課是切實可行的。
【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數學思想
【過程與方法】經歷質疑,猜想,歸納等活動,發展學生的合情推理能力,積累數學活動的經驗,在探索中學會與人合作,學會交流自己的思想和方法。
【情感態度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數學的存在,體驗數學充滿著探索和創造。
【教學重點】多邊形內角和及外角和定理
【教學難點】轉化的數學思維方法
本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節課更是一節難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
【課堂組織策略】利用學生的好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節課的有關內容。
【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當的發展和提高。
整個教學過程分五步完成。
1,創設情景,引入新課
首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
2,合作交流,探索新知。
更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
3,歸納總結,建構體系。
多邊形內角和已得出,對外角和更是水到渠成,這時要適當的總結,讓學生自己得到零散的知識體系。
4,實際應用,提高能力。
5,分組競賽,升華情感
四組不同難度的電子試卷,既鞏固本節課所學的知識,又使學生本節課產生的激情得以釋放。
板書本節課學生所需掌握的知識目標:即多邊形內角和與外角和定理
本節課在知識上由簡單到復雜,學生經歷質疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
七年級數學多邊形的內角和說課稿(通用19篇)篇九
難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
四、教學方法:引導發現法、討論法。
五、教具、學具。
教具:多媒體課件。
學具:三角板、量角器。
六、教學媒體:大屏幕、實物投影。
七、教學過程:
(一)創設情境,設疑激思。
師:大家都知道三角形的內角和是180?,那么四邊形的內角和,你知道嗎?
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數,然后把四個角加起來,發現內角和是360?。
方法二:把兩個三角形紙板拼在一起構成四邊形,發現兩個三角形內角和相加是360?。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
方法1:把五邊形分成三個三角形,3個180?的和是540?。
方法2:從五邊形內部一點出發,把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結果得540?。
方法3:從五邊形一邊上任意一點出發把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結果得540?。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結果得540?。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720?,十邊形內角和是1440?。
(二)引申思考,培養創新。
(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發現1:四邊形內角和是2個180?的和,五邊形內角和是3個180?的'和,六邊形內角和是4個180?的和,十邊形內角和是8個180?的和。
發現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。
(三)實際應用,優勢互補。
(2)一個多邊形的內角和是1440?,且每個內角都相等,則每個內角的度數是()。
(四)概括存儲。
學生自己歸納總結:
2、運用轉化思想解決數學問題。
3、用數形結合的思想解決問題。
(五)作業:練習冊第93頁1、2、3。
八、教學反思:
1、教的轉變。
本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發現結論后,利用幾何畫板直觀地展示,激發學生自覺探究數學問題,體驗發現的樂趣。
2、學的轉變。
學生的角色從學會轉變為會學。本節課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變。
整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維減少干預,教學過程呈現一種比較流暢的特征。整節課學生與學生,學生與教師之間以“對話”、“討論”為出發點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。
文檔為doc格式。
七年級數學多邊形的內角和說課稿(通用19篇)篇十
我說課的內容是人教版七年級(下)冊第七章第三節《多邊形及其內角和》的第二課時。我將在新課程理念的指導下從以下七個方面進行說課。
多邊形的內角和是在三角形內角和知識基礎上的拓廣和發展,是從特殊到一般的深化,是后面學習多邊形鑲嵌的基礎,也是今后學習空間幾何的基礎,學好多邊形內角和的內容,為學生認識探索客觀世界中不同形狀物體存在的一般規律打下基礎,對發展學生的空間觀念和幾何直覺有很大的幫助。
1、我所任教的班級,大部分學生來自農村,由于自小獨立性較強,具有較強的理解能力和應用能力,喜歡合作討論,對數學學習有較濃厚的興趣。大部分學生學習習慣和學習方式較好。
2、本節課讓學生通過實驗探索多邊形內角和公式。在此之前學生對三角形、特殊四邊形的內角和已經有了一定的理解和認識。估計學生在探究任意四邊形內角和時會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學生學習的難點,在探究的過程中教師要想辦法把難點分散,有利于學生對本課知識的學習和掌握。
新的課程標準注重學生經歷觀察、操作、猜想、歸納等探索過程。根據新課標和本節課的內容特點我確定以下教學目標及重點、難點。
【知識與技能】。
【數學思考】。
(1)通過測量,類比,推理等教學活動,探索多邊形的內角和公式,感受數學思考過程的條理性,發展推理能力和語言表達能力。
(2)通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
【解決問題】。
通過探索多邊形內角和公式,讓學生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
【情感態度】。
1、通過動手實踐、相互間的交流,進一步激發學習熱情和求知欲望。
2、體驗猜想得到證實的成就感,在解題中感受生活中數學的存在,體驗數學充滿探索。并在探索過程中激發、培養學生的愛國主義熱情。
基于以上教學目標,我確定以下教學重難點:
【教學難點】探究多邊形內角和時,如何把多邊形轉化成三角形。
因此,本節課我借助課件輔助教學,可以更好的突破重難點,增強直觀效果,豐富學生的感性認識,提高課堂效率。
本節課借鑒了美國教育家杜威的“在做中學”的理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”的思想,我確定如下教法和學法:
1.教學方法:
根據本節課的教學目標、教材內容以及學生的認知特點,我采用啟發式、探索式教學方法,意在幫助學生通過觀察,自己動手,從實踐中獲得知識。整個探究學習的過程充滿了師生之間、學生之間的交流和互動,體現了教師是教學活動的組織者、引導者,而學生才是學習的主體。
2.學習方法:
利用學生的好奇心設疑,解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節課的內容。
1、環節一:創設情景、引入新課。
情景:請學生觀察“上海世博園”的宣傳視頻。
從“情境認知理論”得知:圖文加情境能有效提高課堂教學效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發學生的愛國主義熱情,并引導學生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內角和是多少?設計這個問題的目的是因為探索多邊形內角和與邊數關系的根本方法是把多邊形轉化為多個三角形,因此喚醒學生已有知識“三角形內角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內角和是多少?學生回答后進入新課內容,根據三角形的內角和是個確定值,引導學生猜想任意四邊形的內角和是多少?喚醒學生已有知識,將有助于本堂課問題的解決,也為后面習題作鋪墊。
2、環節二:合作交流、探索新知。
活動1:
猜一猜:圍繞“任意四邊形的內角和等于多少度?”這一問題引導學生從正方形、長方形這兩個特殊的多邊形的內角和,很容易猜測出四邊形的內角和等于360度。
議一議:你是怎樣得到的?你能找到幾種方法?這個環節學生可能出現“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內角和怎么求?你發現了什么?通過這個問題讓學生自然過渡到用作輔助線的方法求多邊形的內角和,同時也要告訴學生在測量和剪拼活動中可能會產生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環節要給予學生充分的探究時間,鼓勵學生積極參與,合作交流,用自己的語言表達解決問題的方式方法,發展學生的語言表達能力與推理能力。
針對不同層次的學生,要適當的引導學生利用作輔助線的方法把多邊形轉化為三角形,鼓勵學生尋找多種分割形式,深入領會轉化的本質——將四邊形轉化為三角形問題來解決。然后讓學生表達自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學生體驗數學活動充滿探索,體驗解決問題策略的多樣性。
想一想:這些分法有什么異同點?學生積極思考,大膽發言,教師給予適當的評價和鼓勵。教師在學生回答的基礎上小結:借助輔助線把四邊形分割成幾個三角形分割的關鍵在于公共點的選取,并演示公共點在圖形內、外、頂點處。利用三角形內角和求得四邊形內角和,這是數學學習中的一種常用轉化的思想方法。
活動2:
做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內角和方法求五邊形、六邊形、七邊形等的內角和,讓學生再一次經歷轉化的過程,加深對轉化思想的理解,通過增加圖形的復雜性,再一次經歷轉化的過程,加深對轉化思想方法的理解,體會由簡單到復雜,由特殊到一般的思想方法。
議一議:
問題1:對比上面探究四邊形內角和的過程,你能得出五邊形的內角和?六邊形的內角和?
問題2:能否采用不同的分割方法來解決這些問題?
活動3:
嘗試完成第五列n邊形的探究。
但是學生有可能出現其它的解決問題的辦法,比如:由四邊形內角和求五邊形內角和,由五邊形內角和再求六邊形內角和,依次類推,邊數每增加1條內角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導,給學生正確的評價。在探索的過程中再一次培養學生的推理能力和表達能力,以及選擇解決問題的最佳方法的能力。
練一練:為了使學生達到對知識的鞏固與應用,我特地設計了一組(5個)即時搶答題,通過這些題目學生當堂訓練、獨立計算,并根據學生都喜好競賽的特點,采用搶答式完成。運用所學公式解決問題并鞏固、理解、記憶公式。
搶答:
(1)過一個多邊形一個頂點有10條對角線,則這是邊形.
(2)過一個多邊形一個頂點的所有對角線將這個多邊形分成五個三角形,則這是邊形.
(3)多邊形的內角和隨著邊數的增加而,邊數增加一條時它的內角和增加度。
3、環節三:例題講解,知識鞏固。
在此,我設計了2個例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個例題就是對四邊形的內角和的簡單應用,對于學生來說比較簡單;對于例2我把書后面的85頁習題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學生掌握:三角形、五邊形的內角和,正五邊形等相關知識。
4、環節四:分組競賽、情感升華。
(1)智慧大比拼。
內容:p87的練習分成2類。
通過新穎的形式激發學生的競爭意識和主動參與活動的熱情。學生利用當堂所學的知識解決問題,鞏固本節知識。
(2)拓展探究。
小組合作探究,引導學生分析可能的每一種截取情況,根據不同截法得出不同結論。鼓勵學生積極參與思考、大膽嘗試、主動探討、勇于創新。讓學生深刻的感受到合作交流的重要性,體會成功的喜悅。
(3)情系世博。
引導學生利用多邊形的內角和公式解釋小明的設想能否實現。讓學生感受到數學的趣味性,以及與實際生活之間的密切聯系,并激發學生的愛國之情。
5、環節五:暢所欲言、分享成果。
請學生談自己學習過程中的收獲,并整理自己參與數學活動的經驗,回味成功的喜悅,形成良好的學習習慣,同時也是給學生正確地評價自己和他人表現的機會,這也是給教者本身一個反思提高的機會。通過這個環節使學生這節課所學的知識系統化,從感性認識上升為理性認識。
6、環節六:布置作業、課后提升。
(1)習題7.3第2題、第4題。
(2)選做題:用另外兩種作輔助線的方法證明多邊形內角和定理。
采用分層布置作業,讓不同水平的學生得到不同的發展,培養學生的思維靈活性及成就感,從而貫徹因材施教的原則。
評價學生,不僅僅是一個手段和結果,它對學生的人格、個性的發展有著極其重要的作用。新課程對課程的評價應把握形成性、發展性評價和終結性評價相結合,在實踐中我打算在課堂上從以下幾個方面進行評價:
1、評價在學習中各種能力〈如表達、想象、動手、思維、自學能力等〉的發展情況。
2、評價學習過程中的創新表現。
3、評價在學習過程中對身邊事物、社會現實的關注程度。
評價必須最大限度地考慮最終結果,要以培養學生的榮譽感、自尊心和進取心為目的,使其產生獲取成功的動力。
最后,我的板書設計力求簡潔明了,便于學生觀察比較、歸納總結,并體現教師的示范作用,突出本堂課的重難點,及主要的思想方法。
七年級數學多邊形的內角和說課稿(通用19篇)篇十一
知識與技能:掌握多邊形內角和定理,進一步了解轉化的數學思想。
重點:多邊形內角和定理的探索和應用。
教學難點:邊形定義的理解;多邊形內角和公式的推導;轉化的數學思維方法的滲透.。
教學過程。
第一環節創設現實情境,提出問題,引入新(3分鐘,學生思考問題,入)。
1.多媒體展示蜂窩,教師結合圖片讓學生發現生活中無處不在的多邊形.。
2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
第二環節概念形成(5分鐘,學生理解定義)。
第三環節實驗探究(12分鐘,學生動手操作,探究內角和)。
(以四人小組為單位展開探究活動)。
活動一:利用四邊形探索四邊形內角和。
要求:先獨立思考再小組合作交流完成.)。
(師巡視,了解學生探索進程并適當點撥.)。
(生思考后交流,把不同的方案在紙上完成.)。
……(組間交流,教師展示幾種方法)。
進而引導學生得出:我們是把四邊形的問題轉化成三角形,再由三角形內角和為180°,求出四邊形內角和為360°,從而使問題得到解決!進一步提出新的探索活動。
活動二:探索五邊形內角和。
(要求:獨立思考,自主完成.)。
第四環節思維升華(5分鐘,教師引導學生進行推算)。
教學過程:
探索n邊形內角和,并試著說明理由。
(結合出示的圖表從代數角度猜測公式,并從幾何意義加以解讀)。
n邊形的內角和=(n—2)180°。
正n邊形的一個內角==。
第五環節能力拓展(12分鐘,學生搶答)。
搶答題:
1.正八邊形的內角和為_______.
3.一個多邊形每個內角的度數是150°,則這個多邊形的邊數是_______.
應用發散:
第六環節時小結:(3分鐘,學生填表)。
第七環節布置作業:習題4、10。
b組(中等生)1。
c組(后三分之一生)1。
教學反思:
七年級數學多邊形的內角和說課稿(通用19篇)篇十二
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發學生學習數學的興趣。
(2)本節的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節用到的`數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節知識時要滲透這兩種思想方法,并且在本節小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。
教學目標:
1.使學生掌握四邊形的有關概念及四邊形的內角和定理;。
2.通過引導學生觀察氣象站的實例,培養學生從具體事物中抽象出幾何圖形的能力;。
3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;。
4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想.
教學重點:
教學難點:
四邊形的概念。
教學過程:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習:
1.課本124頁3題.
小結:
知識:四邊形的有關概念及其內角和定理.
能力:向學生滲透類比和轉化的思想方法.
作業:課本130頁2、3、4題.
七年級數學多邊形的內角和說課稿(通用19篇)篇十三
我在學校出了一節公開課,下面是我的教學反思。
教學回顧:
一:引入新課。提問三角形內角和,正方形和長方形的內角和是多少?那任意一四邊形內角和都是360度嗎?小組討論交流證明任意四邊形內角和都是360度的方法。學生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個三角形的方法最為簡單。類似的探究其他多邊形內角和。
二:完成學案第一部分,用數學歸納法完成填空,總結得出多邊形內角和公式。
三:練習。
四:課堂小結。
五:作業。
反思:
這節課本節的教學活動充分發揮學生的主體作用,激發了學生的學習興趣,使課堂充滿生機。在進行四邊形內角和定理的教學時,設計完成三個步驟:
(1)通過動手操作,讓學生自己通過實驗的方法發現四邊形內角和定理;
(2)讓學生把發現概括成命題;
(3)通過學生討論命題證明的不同方法。
整節課充滿著“自主、合作、探究、交流”的教學理念,營造了思維馳聘的空間,使學生在主動思考探究的過程中自然的獲得了新的知識。但由于本節課的.內容多,學習時間較緊張,所以在給學生進行課堂討論四邊形內角和的不同的證明方法這一環節時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節課的內容沒有對四邊形內角和的證明方法做以補充(習題課時才加以補充)。
七年級數學多邊形的內角和說課稿(通用19篇)篇十四
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發學生學習數學的興趣。
(2)本節的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決.結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節用到的`數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節知識時要滲透這兩種思想方法,并且在本節小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。
教學目標:
2.通過引導學生觀察氣象站的實例,培養學生從具體事物中抽象出幾何圖形的能力;。
3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;。
4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想.
教學重點:
教學難點:
四邊形的概念。
教學過程:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下.其次,要給學生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決.
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習:
1.課本124頁3題.
小結:
能力:向學生滲透類比和轉化的思想方法.
作業:課本130頁2、3、4題.
七年級數學多邊形的內角和說課稿(通用19篇)篇十五
過程與方法目標:通過多邊形內角和公式的推導過程,提高邏輯思維能力。
情感態度與價值觀目標:養成實事求是的科學態度。
講解法、練習法、分小組討論法。
結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環節:導入新知、
生成新知、深化新知、鞏固新知、小結作業。
1.導入新知。
首先是導入新知環節,我會引導學生回顧三角形的內角和,緊接著提出問題:四邊形的。
內角和是多少?五邊形的內角和是多少?六邊形的內角和是多少?引發學生思考,由此引出本節課的課題:多邊形的內角和(板書)。
通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發學生的求知欲,為本節課的多邊形內角和的學習奠定了基礎。
2.生成新知。
接下來,進入生成新知環節,我會引導學生將四邊形分成兩個三角形來求內角和,由此。
得出四邊形的內角和是2個三角形的內角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發劃分為3個4個三角形,從而得出五邊形的內角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內角和公式180*(n-2)。
驗證:七邊形驗證。
在本環節中通過學生自主學習歸納總結得出多邊形的內角和公式,充分發揮了他們的自主探討能力,提升邏輯思維能力。
3.深化新知。
再次是深化新知環節,在本環節,我會引導學生思考一下有沒有其他的將多邊形分隔求。
內角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發,然后用公式驗證一下我們這樣分割可行不可行。這時候會發現有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調我們分隔的一個原則。
本環節的設計主要是對多變形內角和的一個深入了解,給學生一個內化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
4.鞏固提高。
我們說數學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環節,
我講引領學生用我們所學過的多邊形的內角和公式來解決生活中的實際問題。
我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內角和是多少?由此來引發學生思考運用我們本節課所學習的知識來解決問題,對多邊形的內角和公式進一步鞏固提高。
5.小結作業。
先讓學生思考一下我們本節課學習了什么知識點,然后找一位同學來總結一下我們本節課所學習的知識點。對本節課學習內容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
七年級數學多邊形的內角和說課稿(通用19篇)篇十六
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內角和定理。因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用,數學教案-多邊形的內角和。
難點:四邊形的概念及四邊形不穩定性的理解和應用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內”這個條件,這幾個字的意思學生不好理解,所以是難點。
2.教法建議。
(1)本節的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發學生學習數學的興趣。
(2)本節的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決。結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節用到的數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節知識時要滲透這兩種思想方法,并且在本節小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題,初中數學教案《數學教案-多邊形的內角和》。
教學目標:
1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
2.通過引導學生觀察氣象站的實例,培養學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;
4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想。
教學重點:
教學難點:
四邊形的概念。
教學過程:
(一)復習。
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識。請同學們回憶一下這些圖形的概念。找學生說出四種幾何圖形的概念,教師作評價。
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
在定義中要強調“在同一平面內”這個條件,或為學生稍微說明一下。其次,要給學生講清楚“首尾”和“順次”的含義。
2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念。
3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序。
練習:課本124頁1、2題。
4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了。
5.四邊形的對角線:
(四)四邊形的內角和定理。
定理:四邊形的內角和等于.
注意:在研究四邊形時,常常通過作它的對角線,把關于四邊形的問題化成關于三角形的問題來解決。
(五)應用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
證明:(1)(四邊形的內角和等于),
練習:
1.課本124頁3題。
小結:
知識:四邊形的有關概念及其內角和定理。
能力:向學生滲透類比和轉化的思想方法。
作業:課本130頁2、3、4題。
七年級數學多邊形的內角和說課稿(通用19篇)篇十七
《探索多邊形的內角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標不是這一課本身,而是對于這一課的研究給我們數學教學的一點啟發。
有幸與實驗小學趙麗老師同時選中《多邊形的內角和》這一課,但我們從不同角度不同方式對它進行了解讀。20世紀90年代,因為農村小學學生人數的急劇減少,我們學校在課堂上嘗試性的進行了分層異步教學,在同一節課中,根據學生認知水平差異,把學生分成a,b兩組,在組內又依托知識水平相近原則,把3,4名學生分為一個小組,通常采用合——分——合的模式進行教學,即,當a組同學教學時,b組自學,反之亦然,經過與普通班的對比研究,發現復式班學生在學習效果上有著明顯的成效。基于這一基礎,我采用分層的模式來進行多邊形的內角和的教學,這一嘗試,讓我對自己的.數學教學有了如下反思:
1,以經驗為基礎,讓學生得到不同的發展。
基于學生的認知經驗及活動經驗,對學生進行分組,以期達到不同的學生在數學上得到不同程度的發展的目標,學習能力較強的同學要能吃飽,學習能力較弱的同學要在原有基礎上有所進步。在實際教學中,對于a組和b組的學生,除了在教學形式上有所區別外,a組教學為主,b組自學為主,我在教學時間的分配上對ab組并沒有顯著區分,在以后的嘗試探索中,我應對a組加以更細致的教學指導,對b組更大膽的放手,讓學生上臺說,做,教,減少b組的教學時間。
2,勇于放手,培養學生自學的能力。
在一開始設計b組的學習單時,即使b組同學學習能力較強,但出于對學生的擔憂,擔心學生想不到用分一分的方法,在學習單上,我引導學生,多邊形能夠分成幾個三角形,內角和怎么算。而周校長建議我,是否能給學生更多的空間,把“小問題”變為“大問題”,直接提問學生,多邊形的內角和是多少,讓學生去嘗試探索各種方法,而不僅局限于轉化為三角形內角和的方法。在后來的實際教學中,采用了“大問題”的提問方式,我驚喜的發現,學生的探究自學能力比我預想的出色許多。
3,細節入手,培養學生良好習慣。
小學數學良好習慣的培養不僅對學生自身的數學學習有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學生提出明確的要求,課前乃至平時都要對學生的學習習慣進行培養,這樣才能讓我們的數學老師對課堂全局的把握更加深刻,才能夠讓數學課堂井然有序,數學教學效果得到最大程度的保證。
“授人以魚,不如授人以漁?!蔽覀兊臄祵W分層教學不光是為了學生掌握某一定的知識,而是讓學生在不同的學習方式中不斷感悟體會,尋找適合自己的學習方法,最終以得到不同程度的發展。
文檔為doc格式。
七年級數學多邊形的內角和說課稿(通用19篇)篇十八
上完這節課后,自我感覺良好,學生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創新。
首先我先復習相關知識,引出新的問題,明確指出雖然采用的分割方法不同,但是目標是一致的,都是通過添加輔助線,把未知的多邊形的內角和轉化為一些三角形的內角和,向學生滲透了“轉化”這種數學思想方法。在此教學中,只須真正實施民主的開放式教學,創設平等、民主、寬松的教學氛圍,使師生完全處于平等的地位,學生才能敞開思想,積極參與教學活動,才能最大限度地調動學生的積極性,激發他們的學習興趣,引導他們多角度、多方位、多層次地思考問題,使他們有足夠的機會顯示靈性,展現個性。在問題探究、合作交流、形成共識的基礎上,在課堂活動中經歷、感悟知識的生成、發展與變化過程,也只有這樣,才能將創新教育的目標落到實處,讓學生在自主參與學習,解決問題、嘗試到一題多證的方法,體驗到參與的樂趣、合作的價值,并獲得成功的體驗。
六、案例點評。
陳老師在本節課的教學設計上,內容豐富,過程非常具體,設計也較合理。整節課以推導多邊形的內角和為線索,讓學生經歷了提問題、畫圖、判斷、找規律、猜想出一般性的結論。另外,能夠體現了用新教材的思想,體現了學生的主體地位,體現了新的教學理念,也符合初中生的心理特點和年齡特征,因此在教學設計上是比較好的。
但是隨堂練習太少而不精,并且沒有梯度,能否可以設計一些具有一定難度的練習,使不同的學生得到不同層次的發展,為學有余力的學生提供更大的學習和發展空間。另外,關于多邊形的內角和的推導不必要一一講解,只要引導學生解決了探索方法1和探索方法2就可以了,對于探索方法3,可以讓學生課后思考。
七年級數學多邊形的內角和說課稿(通用19篇)篇十九
1、使學生在理解的基礎上掌握三角形的面積計算公式,能夠正確地計算三角形的面積。
2、使學生通過操作和對圖形的觀察、比較,發展學生的空間觀念,使學生知道轉化的思考方法在研究三角形面積時的運用。
3、培養學生的分析、綜合、抽象、概括和運用轉化方法解決實際問題的能力。
1、用厚紙做完全相同的兩個直角三角形、兩個銳角三角形、兩個鈍角三角形。
教師:前面我們學習了平行四邊形面積的計算,今天我們來學習三角形面積的計算。
板書:三角形面積的計算。
1、用數方格的`方法計算三角形的面積。
教師:前面我們在學習長方形面積和平行四邊形面積時,都曾經用過數方格的方法,下面我們再用數方格的方法來求三角形的面積。
2、通過操作總結三角形面積的計算公式。
讓學生拿出兩個完全一樣的銳角三角形,提問:
用兩個完全一樣的銳角三角形能不能拼成一個平行四邊形?讓每個學生都動手拼一拼,或者同桌的兩個學生一同拼擺。
教師邊說邊演示拼的過程。先將兩個銳角三角形重合放置,再按住三角形的右邊頂點,使三角形時針運動相反的方向轉動180,到兩個三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個三角形的右邊平移,直到拼成一個平行四邊形為止,并把拼成的平行四邊形圖畫在黑板上。然后再帶著學生規范地照上面的步驟做一遍,做時仍需邊做邊強調:先要把兩個銳角三角形重合,再旋轉,旋轉時哪個點不動?旋轉了多少度?平移時是沿著哪條直線移動的?學生學會把兩個完全一樣的銳角三角形拼成一個平行四邊形后,教師再說明:平移是圖上各點沿直線移動,旋轉是一個點不動,其它的點都圍繞著不動點轉。提問:
每個銳角三角形的面積和拼出的平行四邊形的面積有什么關系?
學生回答后,教師強調:每個銳角三角形是拼成的平行四邊形面積的一半。
教師結合黑板上分別由兩個完全相同的三角形拼成的平行四邊形的圖指出:通過上面的實驗,兩個完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個平行四邊形。提問:
這個平行四邊形的底和三角形的底有什么關系?
這個平行四邊形的高和三角形的高有什么關系?
這個平行四邊形的面積和其中一個三角形的面積有什么關系?