通過教學(xué)工作計(jì)劃,教師可以合理安排備課時(shí)間,提高教學(xué)準(zhǔn)備的效率。這是一份經(jīng)過多次實(shí)踐和反思的教學(xué)工作計(jì)劃,內(nèi)容翔實(shí)、全面,非常適合教師參考。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇一
教材分析:
在教材分析中我將談一下幾點(diǎn):
(一)、教材的地位與作用:
【有理數(shù)的加法法則】是初中華師版七年級(jí)上冊(cè)第二章第六節(jié)的內(nèi)容,在這之前,學(xué)生已經(jīng)在小學(xué)掌握了算術(shù)運(yùn)算,而前邊的學(xué)習(xí)又初步掌握了有理數(shù)的基本概念,有理數(shù)的加法運(yùn)算是建立在小學(xué)運(yùn)算的基礎(chǔ)之上的,又與小學(xué)加法運(yùn)算有很大的區(qū)別,如小學(xué)的加法運(yùn)算不需要確定符號(hào)運(yùn)算單一,而有理數(shù)的加法不但要計(jì)算絕對(duì)值的大小而且還要確定結(jié)果的符號(hào),由算術(shù)到代數(shù)式學(xué)生從小學(xué)到初中的一個(gè)新的轉(zhuǎn)折點(diǎn)。而有理數(shù)的加法又是有理數(shù)運(yùn)算的主要內(nèi)容是初等數(shù)學(xué)運(yùn)算的基礎(chǔ),同時(shí)又是學(xué)習(xí)物理、化學(xué)等相關(guān)學(xué)科的基礎(chǔ)。因此,這部分內(nèi)容在學(xué)習(xí)數(shù)學(xué)及其他方面占有相當(dāng)重要的地位及作用。
(二)、教學(xué)內(nèi)容:
有理數(shù)的加法的教學(xué)共分2課時(shí),這是有理數(shù)的加法第一課時(shí)。本節(jié)課主要講授有理數(shù)加法的意義,歸納有理數(shù)加法的法則,能區(qū)別有理數(shù)的和與小學(xué)運(yùn)算的和的不同,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進(jìn)行有理數(shù)的加法運(yùn)算。
(三)、教學(xué)目標(biāo):
倡導(dǎo)有理數(shù)的加法要以學(xué)生為主,讓學(xué)生參與”觀察、猜想、驗(yàn)證、歸納、運(yùn)用“的全過程。以培養(yǎng)創(chuàng)新意識(shí)與培養(yǎng)能力為宗旨。從教材的特點(diǎn)和初一學(xué)生的認(rèn)知水平,以教學(xué)思維為出發(fā)點(diǎn)。我設(shè)計(jì)如下的教學(xué)目標(biāo):
1、知識(shí)目標(biāo):使學(xué)生有理數(shù)加法的意義,掌握有理數(shù)加法的法則,并要求學(xué)生在掌握法則的基礎(chǔ)上熟練地進(jìn)行有理數(shù)的加法運(yùn)算。
2、能力目標(biāo):在本節(jié)課的教學(xué)中,借助數(shù)軸向?qū)W生滲透數(shù)形結(jié)合的思想,利用絕對(duì)值把有理數(shù)的加法運(yùn)算化歸為小學(xué)算術(shù)的加減運(yùn)算,體現(xiàn)化歸的思想,以及適度加強(qiáng)法則的形成過程,著重培養(yǎng)學(xué)生”觀察、猜想、驗(yàn)證、歸納、運(yùn)用“等綜合能力。
3、情感目標(biāo):遵循學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律和初一學(xué)生的身心特點(diǎn),按照啟發(fā)式教學(xué)原則用發(fā)現(xiàn)法和直觀教學(xué)法激發(fā)學(xué)生探究教學(xué)的興趣,培養(yǎng)學(xué)生敢于探索、樂于創(chuàng)新的精神。
4、教學(xué)重點(diǎn)、難點(diǎn)和教學(xué)關(guān)鍵:
解決問題的關(guān)鍵是有理數(shù)加法中結(jié)果符號(hào)的確定。
二、教法分析:
為了充分調(diào)動(dòng)學(xué)生的積極性,變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí)使教學(xué)生動(dòng)、有趣、高效,我采用啟發(fā)式教學(xué),發(fā)現(xiàn)法教學(xué)形成性學(xué)習(xí)和多媒體教學(xué)手段共用,考慮到學(xué)生目前仍以直觀思維為主,在教學(xué)中,我采用針對(duì)性較強(qiáng)的相應(yīng)措施。首先,我創(chuàng)設(shè)具體的問題情景運(yùn)用多媒體手段進(jìn)行必要的動(dòng)態(tài)演示,讓學(xué)生看的清楚,聽的明白逐步從圖形的直觀向深化過渡,最后向抽象思維過渡,引導(dǎo)學(xué)生觀察與思考,以增強(qiáng)教學(xué)的直觀性、有效性;其次,引導(dǎo)學(xué)生從特殊到一般的探究,師生共同歸納出有理數(shù)的加法法則,以以增強(qiáng)教學(xué)的直觀性、有效性、深刻性這既是形象思維轉(zhuǎn)化為抽象思維的過程,也是對(duì)學(xué)生觀察、歸納思維能力的過程,再讓學(xué)生參與知識(shí)的形成過程,促進(jìn)認(rèn)知結(jié)構(gòu)的建構(gòu),培養(yǎng)學(xué)生活動(dòng)知識(shí)的能力,從而使學(xué)生在學(xué)習(xí)知識(shí)的過程中,獲得成功的體驗(yàn)。
三、學(xué)法指導(dǎo):
課堂教學(xué)要體現(xiàn)以學(xué)生的發(fā)展為本,為充分體現(xiàn)教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,我采用啟發(fā)式教學(xué)原則,通過提出問題,多媒體的直觀演示和學(xué)生一起分析,歸納出法則。始終讓學(xué)生參與整個(gè)問題的全過程,在整個(gè)教學(xué)過程的設(shè)計(jì)中力求發(fā)揮學(xué)生的主體意識(shí),盡情創(chuàng)造性的學(xué)習(xí),無論在法則的形成,還是法則的運(yùn)用數(shù)學(xué)思想方法的滲透,都避免教師的灌輸方法,有意識(shí)的讓學(xué)生主動(dòng)觀察、比較、分類、歸納積極思考,教師在教學(xué)中加以引導(dǎo)、及時(shí)點(diǎn)撥,激發(fā)學(xué)生的探索精神和求知欲望,培養(yǎng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的主動(dòng)性,讓學(xué)生在愉悅的氣氛中感受到數(shù)學(xué)學(xué)習(xí)的無限樂趣。
四、說教學(xué)過程:
2、然后設(shè)置這樣一個(gè)問題情景,利用動(dòng)態(tài)演示帶領(lǐng)學(xué)生進(jìn)行新課探索,首先我提出問題”兩次一共向東走了多少米?“用什么方法呢?接著我提醒學(xué)生注意審題,暗示學(xué)生題中沒有明確小明朝那個(gè)方向走,通過暗示,引導(dǎo)學(xué)生思考。
3、接著我又提出問題2”在東西走向的馬路上小明從o點(diǎn)出發(fā),向東走了20米,又向西走了-20米,那么兩次一共走了多少米?“利用動(dòng)態(tài)演示,學(xué)生很容易得出”互為相反數(shù)的兩數(shù)相加得0“之后我又提出問題3”在東西走向的馬路上小明從o點(diǎn)出發(fā),向東走了20米,又向西走了0米,那么兩次一共走了多少米?“學(xué)生很容易得出”一個(gè)數(shù)與0相加,仍得0“從而利用上面的演示過程,歸納出有一個(gè)加數(shù)為0的法則。
4、至此,通過師生多種情形的歸納,一起歸納出有理數(shù)的加法法則。
1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
3、互為相反數(shù)的兩數(shù)相加得0。
4、一個(gè)數(shù)與0相加,仍得0】意義上教學(xué)過程通過多媒體演示,把數(shù)、式、形的靜變?yōu)閯?dòng),以增強(qiáng)法則的直觀性,加深法則的理解,突出本節(jié)課的重點(diǎn)、突破難點(diǎn),同時(shí)也增強(qiáng)了數(shù)形結(jié)合的思想運(yùn)用,在歸納出法則后,我有進(jìn)一步啟發(fā)引導(dǎo)學(xué)生分析法則的'特點(diǎn),并總結(jié)規(guī)律”兩有理數(shù)相加,所得的和為符號(hào)和和兩部分組成,加法運(yùn)算的關(guān)鍵是福海的確定,符號(hào)運(yùn)算一旦解決,余下的就是小學(xué)算術(shù)的加減問題了“在這里,我給出兩個(gè)具體的實(shí)例通過對(duì)他們的分析得出:
(-4)+(-8)=-(4+8)=-12。
同號(hào)兩數(shù)相加取相同的符號(hào)通過絕對(duì)值化歸為算術(shù)數(shù)和的過程。
(-9)+(+2)=-(9-2)=-7。
異號(hào)兩數(shù)相加取絕對(duì)值較大符號(hào)通過絕對(duì)值化歸為算術(shù)數(shù)減的過程。
總結(jié):同號(hào)兩數(shù)之和——名副其實(shí)的和——做加法。
異號(hào)兩數(shù)之和——表面是”和“實(shí)際上是做減法。
運(yùn)算步驟:1、先判斷類型:同號(hào)還是異號(hào);2、確定和的符號(hào);
3、后進(jìn)行絕對(duì)值的加減運(yùn)算。
簡(jiǎn)單歸為:8字訣——符號(hào)法則+算式加減。
通過以上的設(shè)計(jì),進(jìn)一步加深了對(duì)法則中難點(diǎn)問題的理解之后教師引導(dǎo)學(xué)生歸納出運(yùn)算步驟,然后又教師歸納出加法法則。
6、接下來我又設(shè)置了一道改錯(cuò)題:
設(shè)置問題,強(qiáng)化關(guān)鍵判斷正誤,并改錯(cuò)。
1、兩個(gè)負(fù)數(shù)相加,絕對(duì)值相加;
2、正數(shù)加負(fù)數(shù),何謂負(fù)數(shù);
3、負(fù)數(shù)加正數(shù),和為正數(shù);
4、兩個(gè)有理數(shù)和為負(fù)數(shù)時(shí),著兩個(gè)有理數(shù)都是負(fù)數(shù)它是專為學(xué)生在運(yùn)用法則時(shí)易出錯(cuò)的問題而設(shè)計(jì)的為促使學(xué)生在引用時(shí)仔細(xì)審題,通過分析辯誤,抓住關(guān)鍵。
7、為了完成從掌握知識(shí)到引用知識(shí)的轉(zhuǎn)化,使知識(shí)教學(xué)與智能訓(xùn)練相結(jié)合,我設(shè)置了以下例、習(xí)題易培養(yǎng)他們的邏輯思維和嚴(yán)密的計(jì)算能力,下面的這組練習(xí)由淺入深、循序漸進(jìn)的原則,其目的在于鞏固法則,加深對(duì)法則的理解和記憶,練習(xí)2通過強(qiáng)化與訓(xùn)練,使學(xué)生熟中生巧、將知識(shí)轉(zhuǎn)化為技能,也為以后的學(xué)習(xí)奠定基礎(chǔ)。
計(jì)算下列各題:
例題1、(-6)+(-8)2、5.2+(-4.5)。
練習(xí):1、計(jì)算下列各題:并說明理由(1)、(-4)+(-7)。
(2)、(-4)+(+7)(3)、(+4)+(+7)。
(4)、(-4)+(+4)(5)、(-9)+0。
練習(xí):2、計(jì)算下列各題:
(1)、15+(-22)(2)、(+0.9)+1.5(3)、(+2.7)+(-3.5)。
8、到這時(shí),整個(gè)教學(xué)過程也接近尾聲了,為了是學(xué)生對(duì)所學(xué)知識(shí)有一個(gè)完整的框架,利于學(xué)生對(duì)知識(shí)的理解和記憶,師生共同合作,從以下三方面進(jìn)行小結(jié):
1、本節(jié)課學(xué)習(xí)的主要內(nèi)容;
2、運(yùn)用有理數(shù)加法法則的關(guān)鍵問題;
9作業(yè)布置:(必做)練習(xí)2、3、4、(選作)習(xí)題1、
10、最后是我的板書設(shè)計(jì):
法則小結(jié)。
步驟與口訣布置作業(yè)。
結(jié)論。
以上是我從四個(gè)方面闡述了本節(jié)課”教什么,怎么教,有理數(shù)的加法為什么這樣教"希望各位專家、老師對(duì)本節(jié)課提出寶貴意見,再次謝謝各位評(píng)委老師。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇二
2.內(nèi)容解析。
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運(yùn)算.有理數(shù)乘法既是有理數(shù)運(yùn)算的深入,又是進(jìn)一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對(duì)后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的.
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運(yùn)算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運(yùn)算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘負(fù)數(shù)時(shí)仍然成立,那么運(yùn)算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會(huì)乘法法則的合理性.與加法法則一樣,正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘負(fù)數(shù)的法則,也要從符號(hào)和絕對(duì)值來分析.由于絕對(duì)值相乘就是非負(fù)數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負(fù)數(shù)的兩數(shù)相乘之積的符號(hào),這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學(xué)重點(diǎn)是兩個(gè)有理數(shù)相乘的符號(hào)法則.
二、目標(biāo)及其解析。
1.目標(biāo)。
(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計(jì)算兩個(gè)數(shù)的乘法.
(2)能說出有理數(shù)乘法的符號(hào)法則,能用例子說明法則的合理性.
2.目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是學(xué)生在進(jìn)行兩個(gè)有理數(shù)乘法運(yùn)算時(shí),能按照乘法法則,先考慮兩乘數(shù)的符號(hào),再考慮兩乘數(shù)的絕對(duì)值,并得出正確的結(jié)果.
達(dá)成目標(biāo)(2)的標(biāo)志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號(hào)法則的歸納過程.
三、教學(xué)問題診斷分析。
有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負(fù)數(shù)參與了運(yùn)算.本課要以正數(shù)、0之間的運(yùn)算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號(hào)和絕對(duì)值兩個(gè)角度觀察這些算式的共同特點(diǎn)并得出規(guī)律,再以問題“要使這個(gè)規(guī)律在引入負(fù)數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)、兩個(gè)負(fù)數(shù)相乘各應(yīng)有什么運(yùn)算結(jié)果,并從積的符號(hào)和絕對(duì)值兩個(gè)角度總結(jié)出規(guī)律,進(jìn)而給出有理數(shù)乘法法則,在這個(gè)過程中體會(huì)規(guī)定的合理性.上述過程中,學(xué)生對(duì)于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會(huì)出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強(qiáng)指導(dǎo),并明確提出“從符號(hào)和絕對(duì)值兩個(gè)角度看規(guī)律”的要求.
本課的教學(xué)難點(diǎn)是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
四、教學(xué)過程設(shè)計(jì)。
教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)、負(fù)數(shù)乘負(fù)數(shù).
設(shè)計(jì)意圖:有理數(shù)分為正數(shù)、零、負(fù)數(shù),由此引出兩個(gè)有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識(shí),為下面的教學(xué)做好準(zhǔn)備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運(yùn)算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認(rèn)為問題要我們“觀察”什么?應(yīng)該從哪幾個(gè)角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學(xué)生仍然有困難,教師給予提示:
(1)四個(gè)算式有什么共同點(diǎn)?——左邊都有一個(gè)乘數(shù)3.
(2)其他兩個(gè)數(shù)有什么變化規(guī)律?——隨著后一個(gè)乘數(shù)逐次遞減1,積逐次遞減3.
設(shè)計(jì)意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負(fù)數(shù)的法則做準(zhǔn)備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
教師:要使這個(gè)規(guī)律在引入負(fù)數(shù)后仍然成立,那么,3×(-1)=-3,這是因?yàn)楹笠怀藬?shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
追問2:根據(jù)這個(gè)規(guī)律,下面的兩個(gè)積應(yīng)該是什么?
3×(-2)=,
3×(-3)=.
練習(xí):請(qǐng)你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
設(shè)計(jì)意圖:讓學(xué)生自主構(gòu)造算式,加深對(duì)運(yùn)算規(guī)律的理解.
先讓學(xué)生觀察、敘述、補(bǔ)充,教師再總結(jié):都是正數(shù)乘負(fù)數(shù),積都為負(fù)數(shù),積的.絕對(duì)值等于各乘數(shù)絕對(duì)值的積.
設(shè)計(jì)意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時(shí)也為后面的學(xué)習(xí)奠定基礎(chǔ).
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵(lì)學(xué)生模仿正數(shù)乘負(fù)數(shù)的過程,自己獨(dú)立得出規(guī)律.
設(shè)計(jì)意圖:為得到負(fù)數(shù)乘正數(shù)的結(jié)論做準(zhǔn)備;培養(yǎng)學(xué)生的模仿、概括的能力.
追問1:要使這個(gè)規(guī)律在引入負(fù)數(shù)后仍然成立,你認(rèn)為下面的空格應(yīng)各填什么數(shù)?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習(xí):請(qǐng)你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
先讓學(xué)生觀察、敘述、補(bǔ)充,教師再總結(jié):都是負(fù)數(shù)乘正數(shù),積都為負(fù)數(shù),積的絕對(duì)值等于各乘數(shù)絕對(duì)值的積.
追問3:正數(shù)乘負(fù)數(shù)、負(fù)數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計(jì)意圖:讓學(xué)生模仿已有的討論過程,自己得出負(fù)數(shù)乘正數(shù)的結(jié)論,并進(jìn)一步概括出“異號(hào)兩數(shù)相乘,積的符號(hào)為負(fù),積的絕對(duì)值等于各乘數(shù)絕對(duì)值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
問題4利用上面歸納的結(jié)論計(jì)算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設(shè)計(jì)意圖:由學(xué)生自主探究得出負(fù)數(shù)乘負(fù)數(shù)的結(jié)論.因?yàn)橛星懊娣e累的豐富經(jīng)驗(yàn),學(xué)生能獨(dú)立完成.
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學(xué)生獨(dú)立思考后進(jìn)行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.
學(xué)生獨(dú)立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.
設(shè)計(jì)意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計(jì)算的關(guān)鍵步驟.
例1計(jì)算:
(1)。
;(2)。
;(3)。
學(xué)生獨(dú)立完成后,全班交流.
教師說明:在(3)中,我們得到了。
=1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。
與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù).
追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個(gè)數(shù)的相反數(shù)嗎?
設(shè)計(jì)意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因?yàn)檫@個(gè)概念很容易理解),同時(shí)說明了求一個(gè)數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
設(shè)計(jì)意圖:利用有理數(shù)乘法解決實(shí)際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值.
小結(jié)、布置作業(yè)。
請(qǐng)同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
(2)用有理數(shù)乘法法則進(jìn)行兩個(gè)有理數(shù)的乘法運(yùn)算的基本步驟是什么?
(3)舉例說明如何從正數(shù)、0的乘法運(yùn)算出發(fā),歸納出正數(shù)乘負(fù)數(shù)的法則.
(4)你能舉例說明符號(hào)法則“負(fù)負(fù)得正”的合理性嗎?
設(shè)計(jì)意圖:引導(dǎo)學(xué)生從知識(shí)內(nèi)容和學(xué)習(xí)過程兩個(gè)方面進(jìn)行小結(jié).
作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題.
五、目標(biāo)檢測(cè)設(shè)計(jì)。
1.判斷下列運(yùn)算結(jié)果的符號(hào):
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2計(jì)算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
設(shè)計(jì)意圖:檢測(cè)學(xué)生對(duì)有理數(shù)乘法法則的理解情況.
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇三
理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會(huì)判別一個(gè)有理數(shù)是整數(shù)還是分?jǐn)?shù),是正數(shù)、負(fù)數(shù)還是零。
二、過程與方法。
經(jīng)歷對(duì)有理數(shù)進(jìn)行分類的探索過程,初步感受分類討論的思想。
三、情感態(tài)度與價(jià)值觀。
通過對(duì)有理數(shù)的學(xué)習(xí),體會(huì)到數(shù)學(xué)與現(xiàn)實(shí)世界的緊密聯(lián)系。
教學(xué)重難點(diǎn)及突破。
在引入了負(fù)數(shù)后,本課對(duì)所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí),使學(xué)生了解分類的思想并進(jìn)行簡(jiǎn)單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開。
教學(xué)準(zhǔn)備。
用電腦制作動(dòng)畫體現(xiàn)有理數(shù)的分類過程。
教學(xué)過程。
四、課堂引入。
2.舉例說明現(xiàn)實(shí)中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個(gè)例子說明+5與-5的區(qū)別。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇四
1、知識(shí)目標(biāo):了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運(yùn)用有理數(shù)的法則進(jìn)行準(zhǔn)確運(yùn)算。
2、能力目標(biāo):通過對(duì)問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
3、情感目標(biāo):培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。
重點(diǎn):有理數(shù)乘法運(yùn)算法則的推導(dǎo)及熟練運(yùn)用。
難點(diǎn):有理數(shù)乘法運(yùn)算中積的符號(hào)的確定。
1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?
求幾個(gè)的運(yùn)算,叫乘法。
一個(gè)數(shù)同0相乘,得0。
2、請(qǐng)你列舉幾道小學(xué)學(xué)過的乘法算式。
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以列式為:(+2)(+3)=。
問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以列式為:
問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以表示為:
問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點(diǎn)的()邊()cm處。
可以表示為:
2、觀察這四個(gè)式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正數(shù)乘正數(shù)積為__數(shù):負(fù)數(shù)乘負(fù)數(shù)積為__數(shù):
負(fù)數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負(fù)數(shù)積為__數(shù):
乘積的絕對(duì)值等于各乘數(shù)絕對(duì)值的_____。
思考:當(dāng)一個(gè)因數(shù)為0時(shí),積是多少?
兩數(shù)相乘,同號(hào)得,異號(hào)得,并把絕對(duì)值。
任何數(shù)同0相乘,都得。
1、你能確定下列乘積的符號(hào)嗎?
37積的符號(hào)為;(—3)7積的符號(hào)為;
3(—7)積的`符號(hào)為;(—3)(—7)積的符號(hào)為。
2先閱讀,再填空:
(—5)x(—3)。同號(hào)兩數(shù)相乘。
(—5)x(—3)=+()得正。
5x3=15把絕對(duì)值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]計(jì)算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
請(qǐng)同學(xué)們仿照上述步驟計(jì)算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
讓我們來總結(jié)求解步驟:
兩個(gè)數(shù)相乘,應(yīng)先確定積的,再確定積的。
1、小組口算比賽,看誰更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔細(xì)計(jì)算。,注意積的符號(hào)和絕對(duì)值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列說法錯(cuò)誤的是()。
a、一個(gè)數(shù)同0相乘,仍得0。
b、一個(gè)數(shù)同1相乘,仍得原數(shù)。
c、如果兩個(gè)數(shù)的乘積等于1,那么這兩個(gè)數(shù)互為相反數(shù)。
d、一個(gè)數(shù)同—1相乘,得原數(shù)的相反數(shù)。
2、在—2,3,4,—5這四個(gè)數(shù)中,任意兩個(gè)數(shù)相乘,所得的積最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、計(jì)算下列各題:
(5)(—6)(—5)=;(6)(—5)(—6)=。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇五
1.1正數(shù)和負(fù)數(shù)(2)。
教學(xué)目標(biāo):
教學(xué)重點(diǎn):
深化對(duì)正負(fù)數(shù)概念的理解。
教學(xué)難點(diǎn):
正確理解和表示向指定方向變化的量。
教學(xué)準(zhǔn)備:彩色粉筆。
教學(xué)過程:
一、復(fù)習(xí)引入:
學(xué)生思考并討論.
(數(shù)0既不是正數(shù)又不是負(fù)數(shù),是正數(shù)和負(fù)數(shù)的分界,是基準(zhǔn).
二、講解新課。
度,用負(fù)數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時(shí),通常用正數(shù)表示收入款額,用負(fù)數(shù)表示支出款額。
思考:教科書第4頁(學(xué)生先思考,教師再講解)。
三、課堂練習(xí)課本p4練習(xí)1,2,3,4。
四、課時(shí)小結(jié)。
引入負(fù)數(shù)可以簡(jiǎn)明的表示相反意義的量,對(duì)于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負(fù)數(shù)表示.在表示具有相反意義的量時(shí),把哪一種意義的量規(guī)定為正,可根據(jù)實(shí)際情況決定.要特別注意零既不是正數(shù)也不是負(fù)數(shù),建立正負(fù)數(shù)概念后,當(dāng)考慮一個(gè)數(shù)時(shí),一定要考慮它的符號(hào),這與以前學(xué)過的數(shù)有很大的區(qū)別.
五、課外作業(yè)教科書p5:2、4。
板書設(shè)計(jì):
文檔為doc格式。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇六
三、情感態(tài)度與價(jià)值觀。
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、
教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵。
1、重點(diǎn):有理數(shù)加減法統(tǒng)一為加法運(yùn)算,掌握有理數(shù)加減混合運(yùn)算、
2、難點(diǎn):省略括號(hào)和加號(hào)的加法算式的運(yùn)算方法、
投影儀、
四、教學(xué)過程。
一、復(fù)習(xí)提問,引入新課。
1、敘述有理數(shù)的加法、減法法則、
2、計(jì)算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我們已學(xué)習(xí)了有理數(shù)加、減法的運(yùn)算,今天我們來研究怎樣進(jìn)行有理數(shù)的加減混合運(yùn)算、
六、鞏固練習(xí)。
1、課本第24頁練習(xí)、
(1)題是已寫成省略加號(hào)的代數(shù)和,可運(yùn)用加法交換律、結(jié)合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)題運(yùn)用加減混合運(yùn)算律,同號(hào)結(jié)合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)題先把加減混合運(yùn)算統(tǒng)一為加法運(yùn)算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括號(hào)和加號(hào))。
=—16+10。
=—6。
七、課堂小結(jié)。
八、作業(yè)布置。
1、課本第25頁第26頁習(xí)題1、3第5、6、13題、
九、板書設(shè)計(jì):
第四課時(shí)。
1、把有理數(shù)加減混合運(yùn)算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計(jì)算簡(jiǎn)便、
歸納:加減混合運(yùn)算可以統(tǒng)一為加法運(yùn)算、
用式子表示為a+b—c=a+b+(—c)、
2、隨堂練習(xí)。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思。
本課教學(xué)反思。
本節(jié)課主要采用過程教案法訓(xùn)練學(xué)生的聽說讀寫。過程教案法的理論基礎(chǔ)是交際理論,認(rèn)為寫作的過程實(shí)質(zhì)上是一種群體間的交際活動(dòng),而不是寫作者的個(gè)人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時(shí)給予學(xué)生指導(dǎo),更正其錯(cuò)誤,幫助學(xué)生完成寫作各階段任務(wù)。課堂是寫作車間,學(xué)生與教師,學(xué)生與學(xué)生彼此交流,提出反饋或修改意見,學(xué)生不斷進(jìn)行寫作,修改和再寫作。在應(yīng)用過程教案法對(duì)學(xué)生進(jìn)行寫作訓(xùn)練時(shí),學(xué)生從沒有想法到有想法,從不會(huì)構(gòu)思到會(huì)構(gòu)思,從不會(huì)修改到會(huì)修改,這一過程有利于培養(yǎng)學(xué)生的寫作能力和自主學(xué)習(xí)能力。學(xué)生由于能得到教師的及時(shí)幫助和指導(dǎo),所以,即使是英語基礎(chǔ)薄弱的同學(xué),也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學(xué)生寫作興趣,增強(qiáng)了寫作的自信心。
這個(gè)話題很容易引起學(xué)生的共鳴,比較貼近生活,能激發(fā)學(xué)生的興趣,在教授知識(shí)的同時(shí),應(yīng)注意將本單元情感目標(biāo)融入其中,即保持樂觀積極的生活態(tài)度,同時(shí)要珍惜生活的點(diǎn)點(diǎn)滴滴。在教授語法時(shí),應(yīng)注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當(dāng)于一個(gè)簡(jiǎn)單的定語從句,一個(gè)清晰的脈絡(luò)能為后續(xù)學(xué)習(xí)打下基礎(chǔ)。此教案設(shè)計(jì)為一個(gè)課時(shí),主要將安妮的處境以及她的精神做一個(gè)簡(jiǎn)要概括,下一個(gè)課時(shí)則對(duì)語法知識(shí)進(jìn)行講解。
在此教案過程中,應(yīng)注重培養(yǎng)學(xué)生的自學(xué)能力,通過輔導(dǎo)學(xué)生掌握一套科學(xué)的學(xué)習(xí)方法,才能使學(xué)生的學(xué)習(xí)積極性進(jìn)一步提高。再者,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)教案效果,才能避免在以后的學(xué)習(xí)中產(chǎn)生兩極分化。
在教案中任然存在的問題是,學(xué)生在“說”英語這個(gè)環(huán)節(jié)還有待提高,大部分學(xué)生都不愿意開口朗讀課文,所以復(fù)述課文便尚有難度,對(duì)于這一部分學(xué)生的學(xué)習(xí)成績(jī)的提高還有待研究。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇七
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。
1、有理數(shù)的加法在整個(gè)知識(shí)系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的理解和解決實(shí)際問題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
2、就第二章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分----有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對(duì)值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。(結(jié)合微機(jī)顯示)。
教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識(shí)目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2、能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識(shí)的能力;3、德育目標(biāo)是:(1)滲透由特殊到一般的辯證唯物主義思想;(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號(hào)兩數(shù)、絕對(duì)值不相等的異號(hào)兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對(duì)法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。
本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負(fù)數(shù)、數(shù)軸、相反數(shù)、絕對(duì)值等概念,因此我沒有把時(shí)間過多地放在復(fù)習(xí)這些舊知識(shí)上,而是利用學(xué)生的好奇心,采用生動(dòng)形象的事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識(shí)。在法則的得出過程中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動(dòng)態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程的設(shè)計(jì)中具體體現(xiàn)。而且在做練習(xí)的過程中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進(jìn)行。
在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動(dòng)情況,使其在教學(xué)過程中在掌握知識(shí)同時(shí)、發(fā)展智力、受到教育。
1、引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡(jiǎn)單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問題,讓學(xué)生在充當(dāng)指揮官的同時(shí),有一種解決問題的成就感,從而使學(xué)生積極主動(dòng)的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍。
2、探索規(guī)律:法則的得出重要體現(xiàn)知識(shí)的發(fā)生,發(fā)展,形成過程。我通過了一個(gè)小人在坐標(biāo)軸上來回的移動(dòng),使學(xué)生在小人的移動(dòng)過程中體會(huì)兩個(gè)數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識(shí)和技能的全過程。最后由學(xué)生對(duì)規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則。
3、鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個(gè)循序漸進(jìn)的.過程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過程中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。
4、歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對(duì)本節(jié)的課進(jìn)行說明。
文檔為doc格式。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇八
學(xué)習(xí)目標(biāo):。
1、理解有理數(shù)的運(yùn)算法則;能根據(jù)有理數(shù)乘法運(yùn)算法則進(jìn)行有理的簡(jiǎn)單運(yùn)算。
2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗(yàn)證能力.
3、培養(yǎng)語言表達(dá)能力.調(diào)動(dòng)學(xué)習(xí)積極性,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣.
學(xué)習(xí)重點(diǎn):有理數(shù)乘法。
學(xué)習(xí)難點(diǎn):法則推導(dǎo)。
教學(xué)方法:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合。
教學(xué)過程。
一、學(xué)前準(zhǔn)備。
計(jì)算:
(1)(一2)十(一2)。
(2)(一2)十(一2)十(一2)。
(3)(一2)十(一2)十(一2)十(一2)。
(4)(一2)十(一2)十(一2)十(一2)十(一2)。
猜想下列各式的值:
(一2)×2(一2)×3。
(一2)×4(一2)×5。
二、探究新知。
1、自學(xué)有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.
2、觀察以上各式,結(jié)合對(duì)問題的研究,請(qǐng)同學(xué)們回答:
(3)負(fù)數(shù)乘以正數(shù)積為__________數(shù),(4)負(fù)數(shù)乘以負(fù)數(shù)積為__________數(shù)。
提出問題:一個(gè)數(shù)和零相乘如何解釋呢?
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇九
1、本節(jié)在引入有理數(shù)減法時(shí)花了較多的時(shí)間,目的是讓學(xué)生有充分的思考空間與時(shí)間進(jìn)行探索,法則的得出,是在經(jīng)歷從實(shí)際例子到抽象的過程中形成種,減法法則的歸納得出是本節(jié)課的難點(diǎn),在這個(gè)過程中,設(shè)計(jì)了師生的交流對(duì)話,教師適時(shí)、適度的引導(dǎo),也體現(xiàn)教師是學(xué)生學(xué)習(xí)的引導(dǎo)者、伙伴的新型師生關(guān)系。
2、在教學(xué)設(shè)計(jì)中,除了考慮學(xué)生探索新知的需要,還考慮學(xué)生對(duì)法則的理解和掌握是建立在一定量的練習(xí)基礎(chǔ)之上的,因此,在例題中增加了一道實(shí)際問題,讓學(xué)生在解決實(shí)際間題過程中培養(yǎng)運(yùn)算能力。另外教師引導(dǎo)(提倡)學(xué)生進(jìn)行解題后的反思,意在逐步培養(yǎng)學(xué)生思維的全面性、系統(tǒng)性。在反思的基礎(chǔ)上又讓學(xué)生規(guī)律,目的是讓學(xué)生順利地掌握法則,并達(dá)到熟練運(yùn)用的程度。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇十
有理數(shù)的加、減、乘、除和乘方運(yùn)算是建立在小學(xué)算術(shù)運(yùn)算的基礎(chǔ)上,有理數(shù)教學(xué)反思。有關(guān)有理數(shù)運(yùn)算的教學(xué),在性質(zhì)上屬于定義教學(xué),歷來是一個(gè)難點(diǎn)課題,教師難教,學(xué)生難理解。有一個(gè)比較省事的做法是,略舉簡(jiǎn)單的事例,盡早出現(xiàn)法則,然后用較多的時(shí)間去練法則,背法則。但新課程提倡讓學(xué)生體驗(yàn)知識(shí)的形成過程。本單元教學(xué)設(shè)計(jì)上盡量考慮有利于基礎(chǔ)知識(shí)、基礎(chǔ)技能的掌握和學(xué)生的創(chuàng)新能力的培養(yǎng),能最大限度地使教學(xué)面向全體學(xué)生,充分照顧不同層次的學(xué)生,使設(shè)計(jì)的思路符合新課程倡導(dǎo)的理念。
反思本單元課,成功之處在于:
1、創(chuàng)設(shè)情境,引入課題,體現(xiàn)了數(shù)學(xué)來源于生活又服務(wù)于生活的理念。例如:在教學(xué)“有理數(shù)的乘法”時(shí),首先由學(xué)生口答有理數(shù)加法的練習(xí)入手,自然地過度到有理數(shù)的乘法,找準(zhǔn)了新知識(shí)的生長點(diǎn),為學(xué)習(xí)新知識(shí)做準(zhǔn)備。然后,讓學(xué)生舉例說明兩個(gè)加法算式的在實(shí)際生活中意義。再提出生活中的另一些實(shí)際問題又可以用怎樣的數(shù)學(xué)知識(shí)去解決的問題。
2、精心設(shè)計(jì)的現(xiàn)實(shí)模型“水位變化,日期前后”使有理數(shù)的乘法法則的“規(guī)定合理性”與“規(guī)定必要性”都得到了事實(shí)的說明。新課程標(biāo)準(zhǔn)強(qiáng)調(diào),教師的'有效教學(xué)應(yīng)指向?qū)W生有意義的數(shù)學(xué)學(xué)習(xí),而有意義的數(shù)學(xué)學(xué)習(xí)又必須建立在學(xué)生的主觀愿望和知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上.在此背景下,本節(jié)課的引入部分通過幻燈片形象直觀地展示學(xué)生熟悉的水庫水位變化情況,創(chuàng)設(shè)了真實(shí)的問題情境,意在誘發(fā)同學(xué)們進(jìn)行探索與解決問題,這樣既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又弘揚(yáng)了灘坑移民精神,對(duì)學(xué)生進(jìn)行德育教育,同時(shí)讓學(xué)生體會(huì)到數(shù)學(xué)問題來源于實(shí)際生活。
3、練習(xí)設(shè)計(jì),讓學(xué)生體驗(yàn)到成功的樂趣。本單元內(nèi)容安排緊湊,由淺入深,循序漸進(jìn)地突破難點(diǎn)。根據(jù)七年級(jí)學(xué)生的思維特點(diǎn)和年齡特征,設(shè)計(jì)了“試一試”、“練一練”、“合作學(xué)習(xí)”等環(huán)節(jié),激發(fā)學(xué)生的好奇心,并在教學(xué)中盡量用激勵(lì)性和導(dǎo)向性的語言來鼓勵(lì)學(xué)生大膽發(fā)言,面向全體學(xué)生,讓學(xué)生在比較輕松和諧的課堂氛圍中較好地完成了學(xué)習(xí)任務(wù)。
盡管最初的設(shè)計(jì)能體現(xiàn)一些新的理念,但經(jīng)過課堂實(shí)踐后,仍感到有許多不足。
1、課堂引入化時(shí)間太多。有理數(shù)的加法對(duì)本節(jié)課的作用不是很大,直接從水位變化的實(shí)例引出可以節(jié)省一些時(shí)間用于合作學(xué)習(xí)的環(huán)節(jié)。
2、“鞏固訓(xùn)練”這一環(huán)節(jié)的題目有時(shí)設(shè)計(jì)的較難,對(duì)中下學(xué)生一時(shí)難以接受。重點(diǎn)應(yīng)該是練習(xí)有理數(shù)運(yùn)算的法則,計(jì)算量不易太大。應(yīng)按由易到難的順序進(jìn)行,學(xué)生會(huì)容易接受。
3、教學(xué)中感覺教師啟發(fā)引導(dǎo)的較多,給學(xué)生自主探索思考的空間較少。這樣不利于學(xué)生思維的發(fā)展,不利于學(xué)生主體作用的發(fā)揮。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇十一
2、在教學(xué)設(shè)計(jì)中,除了考慮學(xué)生探索新知的'需要,還考慮學(xué)生對(duì)法則的理解和掌握是建立在一定量的練習(xí)基礎(chǔ)之上的,因此,在例題中增加了一道實(shí)際問題,讓學(xué)生在解決實(shí)際間題過程中培養(yǎng)運(yùn)算能力.另外教師引導(dǎo)(提倡)學(xué)生進(jìn)行解題后的反思,意在逐步培養(yǎng)學(xué)生思維的全面性、系統(tǒng)性.在反思的基礎(chǔ)上又讓學(xué)生(或教師啟發(fā)引導(dǎo))去尋找一些(如減正數(shù)即加負(fù)數(shù);減負(fù)數(shù)即加正數(shù))規(guī)律,目的是讓學(xué)生順利地掌握法則,并達(dá)到熟練運(yùn)用的程度。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇十二
根據(jù)定義,無限循環(huán)小數(shù)和有限小數(shù)(整數(shù)可認(rèn)為是小數(shù)點(diǎn)后是0的小數(shù)),統(tǒng)稱為有理數(shù),無限不循環(huán)小數(shù)是無理數(shù)。
但人類不可能寫出一個(gè)位數(shù)最多的有理數(shù),對(duì)全地球人類,或比地球人更智慧的生物來說是有理數(shù)的數(shù),對(duì)每個(gè)地球人來說,可能是無法知道它是有理數(shù)還是無理數(shù)了。因此有理數(shù)和無理數(shù)的邊界,竟然緊靠無理數(shù),任何兩個(gè)十分接近的無理數(shù)中間,都可以加入無窮多的有理數(shù),反之也成立。
竟然沒有人知道有理數(shù)的邊界,或者說有理數(shù)的邊界是無限接近無理數(shù)的。
定理。
定理:位數(shù)最多的非無限循環(huán)有理數(shù)是不可能被寫出的,盡管它的定義是有有限位,但它是無限趨近于無理數(shù)的,以致于沒有手段進(jìn)行判斷。
證明。
證明:假設(shè)位數(shù)最多的非無限循環(huán)有理數(shù)被寫出,我們?cè)谶@個(gè)數(shù)的最后再加一位,這個(gè)數(shù)還是有限位有理數(shù),但位數(shù)比已寫出有理數(shù)多一位,證明原來寫出的不是位數(shù)最多的非無限循環(huán)有理數(shù)。所以位數(shù)最多的非無限循環(huán)有理數(shù)是不可能被寫出的。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇十三
一、問題的引入:在問題的引入上。新課標(biāo)規(guī)定應(yīng)從實(shí)際情景入手,并且使學(xué)生能夠?qū)栴}產(chǎn)生強(qiáng)烈的求知欲。我采用了敵軍對(duì)我軍進(jìn)行小規(guī)模軍事偵察的問題,使學(xué)生處在一個(gè)指揮官的角色。對(duì)問題提出解決的辦法,并且在對(duì)學(xué)生提出的各種情況,作出實(shí)際的操作,使學(xué)生明白數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用。我感覺在問題的引入上問題過于簡(jiǎn)單,使學(xué)生思考的范圍過于局限。沒有出現(xiàn)比較熱烈的學(xué)習(xí)氣氛。所以問題的引入應(yīng)加大深度,應(yīng)具有一定的挑戰(zhàn)性。
二、問題的探索:在問題的探索上,我采用了一個(gè)小人在坐標(biāo)軸上來回行走,產(chǎn)生一種動(dòng)態(tài)效果,使學(xué)生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時(shí)間和空間的條件下,親身參加探索發(fā)現(xiàn),主動(dòng)的獲取知識(shí)和技能。但在整個(gè)的實(shí)施過程中出現(xiàn)了一些問題,比如:在法則的得出上學(xué)生的總結(jié)出現(xiàn)了一些問題,我再處理時(shí)由于怕時(shí)間不夠充裕所以學(xué)生出現(xiàn)的問題我給作出了解答,其實(shí)這里應(yīng)由學(xué)生自己來解決,這樣對(duì)學(xué)生能力的提高非常有幫助。
三、習(xí)題的配備:整個(gè)習(xí)題的配備大致是按從易到難的順序排列的,面向全體學(xué)生,采用多種形式,使不同層次的學(xué)生都有所得,并且采用循序漸進(jìn)的方法,使學(xué)生對(duì)加法法則的理解進(jìn)一步的加強(qiáng)。在講解完例題后,讓學(xué)生互相提問,以促使學(xué)生積極踴躍的參與到教學(xué)活動(dòng)中來,創(chuàng)造一種輕松的學(xué)習(xí)氛圍。在最后的習(xí)題配備上,讓學(xué)生對(duì)兩個(gè)加數(shù)及和之間的關(guān)系作出判斷,并且對(duì)各種情況作出討論,達(dá)到本節(jié)課的一個(gè)高潮。促使學(xué)生的思路得到進(jìn)一步的加強(qiáng)。但我總體感覺習(xí)題的量不夠充足,學(xué)生的練習(xí)機(jī)會(huì)較少。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇十四
1、(6分)把下列各數(shù)填在相應(yīng)的集合內(nèi):
-23,0.25,,-5.18,18,-38,10,+7,0,+12。
正數(shù)集合:{………}。
整數(shù)集合:{………}。
分?jǐn)?shù)集合:{………}。
2、某校對(duì)七年級(jí)男生進(jìn)行俯臥撐測(cè)試,以能做7個(gè)為標(biāo)準(zhǔn),超過的次數(shù)用正數(shù)表示,不足的次數(shù)用負(fù)數(shù)表示,其中8名男生的成績(jī)?nèi)缦卤恚?/p>
2-103-2-310。
(1)這8名男生的達(dá)標(biāo)率是百分之幾?
(2)這8名男生共做了多少個(gè)俯臥撐?
答案。
1、
正數(shù)集合:{0.25,18,10,+7,+12………}。
整數(shù)集合:{-23,18,-38,10,+7,0,+12………}。
分?jǐn)?shù)集合:{0.25,,-5.18………}。
2、
(1)50%,(2)56個(gè)。
七年級(jí)數(shù)學(xué)教案有理數(shù)的加法(優(yōu)質(zhì)15篇)篇十五
2?培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。
重點(diǎn)和難點(diǎn):正確地求出代數(shù)式的值。
一、從學(xué)生原有的認(rèn)識(shí)結(jié)構(gòu)提出問題。
1?用代數(shù)式表示:(投影)。
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;。
(3)a與b的和的50%?
2?用語言敘述代數(shù)式2n+10的意義?
3?對(duì)于第2題中的代數(shù)式2n+10,可否編成一道實(shí)際問題呢?(在學(xué)生回答的基礎(chǔ)上,教師打投影)。
若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢?
二、師生共同研究代數(shù)式的值的意義。
2?結(jié)合上述例題,提出如下幾個(gè)問題:
(1)求代數(shù)式2x+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?
下面教師結(jié)合例題來引導(dǎo)學(xué)生歸納,概括出上述問題的答案?(教師板書例題時(shí),應(yīng)注意格式規(guī)范化)。
例1當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值?
解:當(dāng)x=7,y=4,z=0時(shí),
x(2x-y+3z)=7×(2×7-4+3×0)。
=7×(14-4)。
=70?
注意:如果代數(shù)式中省略乘號(hào),代入后需添上乘號(hào)。