教學工作計劃要突出教育教學目標,明確師生的任務和責任,推動教學工作的有序進行。以下是小編為大家整理的教學工作計劃范文,希望能夠為大家的教學工作提供一些啟示和參考。
七年級數學教案有理數的加法大全(15篇)篇一
學習過程:
一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
2.加法的交換律:
兩個數相加,交換_______的位置,和不變.用式子表示:a+b=_______.
3.加法的結合律:
七年級數學教案有理數的加法大全(15篇)篇二
2.培養學生觀察、分析、歸納及運算能力。
三、教學重點。
四、教學難點。
五、教學用具。
三角尺、小黑板、小卡片。
六、課時安排。
1課時。
七、教學過程。
(一)、從學生原有認知結構提出問題。
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數與和,求另一個加數,在小學里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數的減法,減法是加法的逆運算。
(二)、師生共同研究有理數減法法則。
問題1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教師引導學生發現:兩式的結果相同,(更多內容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的結果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導學生歸納出有理數減法法則:
減去一個數,等于加上這個數的。相反數。
教師強調運用此法則時注意“兩變”:一是減法變為加法;二是減數變為其相反數。減數變號(減法============加法)。
(三)、運用舉例變式練習。
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數減法算式,引導學生發現:
在小學里學習的減法,差總是小于被減數,在有理數減法中,差不一定小于被減數了,只要減去一個負數,其差就大于被減數。
閱讀課本63頁例3。
(四)、小結。
1.教師指導學生閱讀教材后強調指出:
由于把減數變為它的相反數,從而減法轉化為加法。有理數的加法和減法,當引進負數后就可以統一用加法來解決。
2.不論減數是正數、負數或是零,都符合有理數減法法則。在使用法則時,注意被減數是永不變的。
(五)、課堂練習。
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.計算:
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數減法解下列問題。
八、布置課后作業:
課本習題2.6知識技能的2、3、4和問題解決1。
九、板書設計。
2.5有理數的減法。
(一)知識回顧(三)例題解析(五)課堂小結。
例1、例2、例3。
(二)觀察發現(四)課堂練習練習設計。
十、課后反思。
七年級數學教案有理數的加法大全(15篇)篇三
三、情感態度與價值觀。
體會數學與現實生活的聯系,提高學生學習數學的興趣、
教學重點、難點與關鍵。
1、重點:有理數加減法統一為加法運算,掌握有理數加減混合運算、
2、難點:省略括號和加號的加法算式的運算方法、
投影儀、
四、教學過程。
一、復習提問,引入新課。
1、敘述有理數的加法、減法法則、
2、計算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我們已學習了有理數加、減法的運算,今天我們來研究怎樣進行有理數的加減混合運算、
六、鞏固練習。
1、課本第24頁練習、
(1)題是已寫成省略加號的代數和,可運用加法交換律、結合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)題運用加減混合運算律,同號結合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)題先把加減混合運算統一為加法運算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括號和加號)。
=—16+10。
=—6。
七、課堂小結。
八、作業布置。
1、課本第25頁第26頁習題1、3第5、6、13題、
九、板書設計:
第四課時。
1、把有理數加減混合運算轉化為加法后,常用加法交換律和結合律使計算簡便、
歸納:加減混合運算可以統一為加法運算、
用式子表示為a+b—c=a+b+(—c)、
2、隨堂練習。
3、小結。
4、課后作業。
十、課后反思。
本課教學反思。
本節課主要采用過程教案法訓練學生的聽說讀寫。過程教案法的理論基礎是交際理論,認為寫作的過程實質上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學生指導,更正其錯誤,幫助學生完成寫作各階段任務。課堂是寫作車間,學生與教師,學生與學生彼此交流,提出反饋或修改意見,學生不斷進行寫作,修改和再寫作。在應用過程教案法對學生進行寫作訓練時,學生從沒有想法到有想法,從不會構思到會構思,從不會修改到會修改,這一過程有利于培養學生的寫作能力和自主學習能力。學生由于能得到教師的及時幫助和指導,所以,即使是英語基礎薄弱的同學,也能在這樣的環境下,寫出較好的作文來,從而提高了學生寫作興趣,增強了寫作的自信心。
這個話題很容易引起學生的共鳴,比較貼近生活,能激發學生的興趣,在教授知識的同時,應注意將本單元情感目標融入其中,即保持樂觀積極的生活態度,同時要珍惜生活的點點滴滴。在教授語法時,應注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡能為后續學習打下基礎。此教案設計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
在此教案過程中,應注重培養學生的自學能力,通過輔導學生掌握一套科學的學習方法,才能使學生的學習積極性進一步提高。再者,培養學生的學習興趣,增強教案效果,才能避免在以后的學習中產生兩極分化。
在教案中任然存在的問題是,學生在“說”英語這個環節還有待提高,大部分學生都不愿意開口朗讀課文,所以復述課文便尚有難度,對于這一部分學生的學習成績的提高還有待研究。
七年級數學教案有理數的加法大全(15篇)篇四
理解有理數的概念,懂得有理數的兩種分類方法:會判別一個有理數是整數還是分數,是正數、負數還是零。
二、過程與方法。
經歷對有理數進行分類的探索過程,初步感受分類討論的思想。
三、情感態度與價值觀。
通過對有理數的學習,體會到數學與現實世界的緊密聯系。
教學重難點及突破。
在引入了負數后,本課對所學過的數按照一定的標準進行分類,提出了有理數的概念。分類是數學中解決問題的常用手段,通過本節課的學習,使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
教學準備。
用電腦制作動畫體現有理數的分類過程。
教學過程。
四、課堂引入。
2.舉例說明現實中具有相反意義的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區別。
七年級數學教案有理數的加法大全(15篇)篇五
教材分析:
在教材分析中我將談一下幾點:
(一)、教材的地位與作用:
【有理數的加法法則】是初中華師版七年級上冊第二章第六節的內容,在這之前,學生已經在小學掌握了算術運算,而前邊的學習又初步掌握了有理數的基本概念,有理數的加法運算是建立在小學運算的基礎之上的,又與小學加法運算有很大的區別,如小學的加法運算不需要確定符號運算單一,而有理數的加法不但要計算絕對值的大小而且還要確定結果的符號,由算術到代數式學生從小學到初中的一個新的轉折點。而有理數的加法又是有理數運算的主要內容是初等數學運算的基礎,同時又是學習物理、化學等相關學科的基礎。因此,這部分內容在學習數學及其他方面占有相當重要的地位及作用。
(二)、教學內容:
有理數的加法的教學共分2課時,這是有理數的加法第一課時。本節課主要講授有理數加法的意義,歸納有理數加法的法則,能區別有理數的和與小學運算的和的不同,并要求學生在掌握法則的基礎上熟練地進行有理數的加法運算。
(三)、教學目標:
倡導有理數的加法要以學生為主,讓學生參與”觀察、猜想、驗證、歸納、運用“的全過程。以培養創新意識與培養能力為宗旨。從教材的特點和初一學生的認知水平,以教學思維為出發點。我設計如下的教學目標:
1、知識目標:使學生有理數加法的意義,掌握有理數加法的法則,并要求學生在掌握法則的基礎上熟練地進行有理數的加法運算。
2、能力目標:在本節課的教學中,借助數軸向學生滲透數形結合的思想,利用絕對值把有理數的加法運算化歸為小學算術的加減運算,體現化歸的思想,以及適度加強法則的形成過程,著重培養學生”觀察、猜想、驗證、歸納、運用“等綜合能力。
3、情感目標:遵循學生學習的認知規律和初一學生的身心特點,按照啟發式教學原則用發現法和直觀教學法激發學生探究教學的興趣,培養學生敢于探索、樂于創新的精神。
4、教學重點、難點和教學關鍵:
解決問題的關鍵是有理數加法中結果符號的確定。
二、教法分析:
為了充分調動學生的積極性,變被動學習為主動學習使教學生動、有趣、高效,我采用啟發式教學,發現法教學形成性學習和多媒體教學手段共用,考慮到學生目前仍以直觀思維為主,在教學中,我采用針對性較強的相應措施。首先,我創設具體的問題情景運用多媒體手段進行必要的動態演示,讓學生看的清楚,聽的明白逐步從圖形的直觀向深化過渡,最后向抽象思維過渡,引導學生觀察與思考,以增強教學的直觀性、有效性;其次,引導學生從特殊到一般的探究,師生共同歸納出有理數的加法法則,以以增強教學的直觀性、有效性、深刻性這既是形象思維轉化為抽象思維的過程,也是對學生觀察、歸納思維能力的過程,再讓學生參與知識的形成過程,促進認知結構的建構,培養學生活動知識的能力,從而使學生在學習知識的過程中,獲得成功的體驗。
三、學法指導:
課堂教學要體現以學生的發展為本,為充分體現教師為主導、學生為主體的教學原則,我采用啟發式教學原則,通過提出問題,多媒體的直觀演示和學生一起分析,歸納出法則。始終讓學生參與整個問題的全過程,在整個教學過程的設計中力求發揮學生的主體意識,盡情創造性的學習,無論在法則的形成,還是法則的運用數學思想方法的滲透,都避免教師的灌輸方法,有意識的讓學生主動觀察、比較、分類、歸納積極思考,教師在教學中加以引導、及時點撥,激發學生的探索精神和求知欲望,培養學生的學習數學的主動性,讓學生在愉悅的氣氛中感受到數學學習的無限樂趣。
四、說教學過程:
2、然后設置這樣一個問題情景,利用動態演示帶領學生進行新課探索,首先我提出問題”兩次一共向東走了多少米?“用什么方法呢?接著我提醒學生注意審題,暗示學生題中沒有明確小明朝那個方向走,通過暗示,引導學生思考。
3、接著我又提出問題2”在東西走向的馬路上小明從o點出發,向東走了20米,又向西走了-20米,那么兩次一共走了多少米?“利用動態演示,學生很容易得出”互為相反數的兩數相加得0“之后我又提出問題3”在東西走向的馬路上小明從o點出發,向東走了20米,又向西走了0米,那么兩次一共走了多少米?“學生很容易得出”一個數與0相加,仍得0“從而利用上面的演示過程,歸納出有一個加數為0的法則。
4、至此,通過師生多種情形的歸納,一起歸納出有理數的加法法則。
1、同號兩數相加,取相同的符號,并把絕對值相加;
3、互為相反數的兩數相加得0。
4、一個數與0相加,仍得0】意義上教學過程通過多媒體演示,把數、式、形的靜變為動,以增強法則的直觀性,加深法則的理解,突出本節課的重點、突破難點,同時也增強了數形結合的思想運用,在歸納出法則后,我有進一步啟發引導學生分析法則的'特點,并總結規律”兩有理數相加,所得的和為符號和和兩部分組成,加法運算的關鍵是福海的確定,符號運算一旦解決,余下的就是小學算術的加減問題了“在這里,我給出兩個具體的實例通過對他們的分析得出:
(-4)+(-8)=-(4+8)=-12。
同號兩數相加取相同的符號通過絕對值化歸為算術數和的過程。
(-9)+(+2)=-(9-2)=-7。
異號兩數相加取絕對值較大符號通過絕對值化歸為算術數減的過程。
總結:同號兩數之和——名副其實的和——做加法。
異號兩數之和——表面是”和“實際上是做減法。
運算步驟:1、先判斷類型:同號還是異號;2、確定和的符號;
3、后進行絕對值的加減運算。
簡單歸為:8字訣——符號法則+算式加減。
通過以上的設計,進一步加深了對法則中難點問題的理解之后教師引導學生歸納出運算步驟,然后又教師歸納出加法法則。
6、接下來我又設置了一道改錯題:
設置問題,強化關鍵判斷正誤,并改錯。
1、兩個負數相加,絕對值相加;
2、正數加負數,何謂負數;
3、負數加正數,和為正數;
4、兩個有理數和為負數時,著兩個有理數都是負數它是專為學生在運用法則時易出錯的問題而設計的為促使學生在引用時仔細審題,通過分析辯誤,抓住關鍵。
7、為了完成從掌握知識到引用知識的轉化,使知識教學與智能訓練相結合,我設置了以下例、習題易培養他們的邏輯思維和嚴密的計算能力,下面的這組練習由淺入深、循序漸進的原則,其目的在于鞏固法則,加深對法則的理解和記憶,練習2通過強化與訓練,使學生熟中生巧、將知識轉化為技能,也為以后的學習奠定基礎。
計算下列各題:
例題1、(-6)+(-8)2、5.2+(-4.5)。
練習:1、計算下列各題:并說明理由(1)、(-4)+(-7)。
(2)、(-4)+(+7)(3)、(+4)+(+7)。
(4)、(-4)+(+4)(5)、(-9)+0。
練習:2、計算下列各題:
(1)、15+(-22)(2)、(+0.9)+1.5(3)、(+2.7)+(-3.5)。
8、到這時,整個教學過程也接近尾聲了,為了是學生對所學知識有一個完整的框架,利于學生對知識的理解和記憶,師生共同合作,從以下三方面進行小結:
1、本節課學習的主要內容;
2、運用有理數加法法則的關鍵問題;
9作業布置:(必做)練習2、3、4、(選作)習題1、
10、最后是我的板書設計:
法則小結。
步驟與口訣布置作業。
結論。
以上是我從四個方面闡述了本節課”教什么,怎么教,有理數的加法為什么這樣教"希望各位專家、老師對本節課提出寶貴意見,再次謝謝各位評委老師。
七年級數學教案有理數的加法大全(15篇)篇六
1.1正數和負數(2)。
教學目標:
教學重點:
深化對正負數概念的理解。
教學難點:
正確理解和表示向指定方向變化的量。
教學準備:彩色粉筆。
教學過程:
一、復習引入:
學生思考并討論.
(數0既不是正數又不是負數,是正數和負數的分界,是基準.
二、講解新課。
度,用負數表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數表示收入款額,用負數表示支出款額。
思考:教科書第4頁(學生先思考,教師再講解)。
三、課堂練習課本p4練習1,2,3,4。
四、課時小結。
引入負數可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數表示,那么另一種量可以用負數表示.在表示具有相反意義的量時,把哪一種意義的量規定為正,可根據實際情況決定.要特別注意零既不是正數也不是負數,建立正負數概念后,當考慮一個數時,一定要考慮它的符號,這與以前學過的數有很大的區別.
五、課外作業教科書p5:2、4。
板書設計:
七年級數學教案有理數的加法大全(15篇)篇七
學習目標:。
1、理解加減法統一成加法運算的意義.
2、會將有理數的加減混合運算轉化為有理數的加法運算.
3、培養學習數學的興趣,增強學習數學的信心.
教學方法:講練相結合。
教學過程。
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
記作+4.5千米—3.2千米+1.1千米—1.4千米。
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
2、你是怎么算出來的,方法是。
1、現在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
=(-20)+(+3)+(+5)+(-7)先把減法轉化為加法。
=-20+3+5-7再把加號記在腦子里,省略不寫。
可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
4、師生完整寫出解題過程。
1、解決引例中的問題,再比較前面的方法,你的感覺是。
2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
1、小結:說說這節課的收獲。
2、p241、2。
3、計算。
1)27—18+(—7)—322)。
五、作業。
1、p2552、p26第8題、14題。
七年級數學教案有理數的加法大全(15篇)篇八
1.使學生理解有理數加法的意義,初步掌握有理數加法法則,并能準確地進行有理數的加法運算.
2.通過有理數的加法運算,培養學生的運算能力.
教學重點與難點。
重點:熟練應用有理數的加法法則進行加法運算.
教學過程。
(一)復習提問。
1.有理數是怎么分類的?
2.有理數的絕對值是怎么定義的?一個有理數的絕對值的幾何意義是什么?
3.有理數大小比較是怎么規定的?下列各組數中,哪一個較大?利用數軸說明?
-3與-2;3與-3;-3與0;。
-2與+1;-+4與-3.
(二)引入新課。
在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數和零的范圍內的運算.引入負數之后,這些運算法則將是怎樣的呢?我們先來學有理數的加法運算.
兩次行走后距原點0為8米,應該用加法.
為區別向東還是向西走,這里規定向東走為正,向西走為負.這兩數相加有以下三種情況:
1.同號兩數相加。
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8。
用數軸表示如圖:略。
從數軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數加正數,其和仍是正數,和的絕對值等于這兩個加數的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米。
(-5)+(-3)=-8。
用數軸表示如圖:略。
從數軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數加負數,其和仍是負數,和的絕對值也是等于兩個加數的絕對值的和.
總之,同號兩數相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),同號兩數相加。
(-4)+(-5)=-(),取相同的符號。
4+5=9把絕對值相加。
(-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
2.異號兩數相加。
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0。
可知,互為相反數的兩個數相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是3+(-5)=-2.
最后歸納。
例如(-8)+5絕對值不相等的異號兩數相加。
85。
(-8)+5=-()取絕對值較大的加數符號。
8-5=3用較大的絕對值減去較小的絕對值。
(-8)+5=-3.
口答練習。
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)。
3.一個數和零相加。
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來。
由(1),(2)得出:一個數同0相加,仍得這個數.
總結有理數加法的三個法則.學生看書,引導他們看有理數加法運算的三種情況.
特例:兩個互為相反數相加;。
(3)一個數和零相加.
每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析。
例1計算(-3)+(-9).
分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
解:(-3)+(-9)=-12.
例2。
分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值..(強調兩個較大一個較小)。
解:解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習。
1.計算(口答)。
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);。
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;。
2.計算。
(1)5+(-22);(2)(-1.3)+(-8)。
(3)(-0.9)+1.5;(4)2.7+(-3.5)。
將本文的word文檔下載到電腦,方便收藏和打印。
七年級數學教案有理數的加法大全(15篇)篇九
本課(節)課題3.1認識直棱柱第1課時/共課時。
教學目標(含重點、難點)及。
1、了解多面體、直棱柱的有關概念.
2、會認直棱柱的側棱、側面、底面.。
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
教學重點與難點。
教學重點:直棱柱的有關概念.
教學難點:本節的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內容與環節預設、簡明設計意圖二度備課(即時反思與糾正)。
析:學生很容易回答出更多的答案。
師:(繼續補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學們再討論一下,能否把自己的語言轉化為數學語言。
學生活動:分小組討論。
說明:真正體現了“以生為本”。讓學生在主動探究中發現知識,充分發揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區別)。
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側棱互相平行且相等。
4.學以至用。
出示例題。(先請學生單獨考慮,再作講解)。
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養成發現問題,解決問題的創造性思維習慣)。
最后完成例題中的“想一想”
5.鞏固練習(學生練習)。
完成“課內練習”
師:我們這節課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計。
作業布置或設計作業本及課時特訓。
七年級數學教案有理數的加法大全(15篇)篇十
2、在教學設計中,除了考慮學生探索新知的'需要,還考慮學生對法則的理解和掌握是建立在一定量的練習基礎之上的,因此,在例題中增加了一道實際問題,讓學生在解決實際間題過程中培養運算能力.另外教師引導(提倡)學生進行解題后的反思,意在逐步培養學生思維的全面性、系統性.在反思的基礎上又讓學生(或教師啟發引導)去尋找一些(如減正數即加負數;減負數即加正數)規律,目的是讓學生順利地掌握法則,并達到熟練運用的程度。
七年級數學教案有理數的加法大全(15篇)篇十一
學習目標:
1.會用正.負數表示具有相反意義的量.
2.通過正.負數學習,培養學生應用數學知識的意識.
3.通過探究,滲透對立統一的辨證思想。
學習重點:
用正.負數表示具有相反意義的量。
學習難點:
實際問題中的數量關系。
教學方法:
講練相結合。
教學過程。
一.學前準備。
通過上節課的學習,我們知道在實際生產和生活中存在著兩種不同意義的量,為了區分它們,我們用正數和負數來分別表示它們.
問題1:“零”為什么即不是正數也不是負數呢?
引導學生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題。
問題2:(教科書第4頁例題)。
先引導學生分析,再讓學生獨立完成。
(2)20xx年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長―1kg,小強體重增長0kg.
(2)六個國家20xx年商品進出口總額的增長率:
美國―6.4%,德國1.3%,
法國―2.4%,英國―3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習。
從0表示一個也沒有,是正數和負數的分界的角度引導學生理解.
在學生的討論中簡單介紹分類的數學思想先不要給出有理數的概念.
在例題中,讓學生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數表示,哪個用負數表示.
通過問題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
四.閱讀思考1頁。
(教科書第8頁)用正負數表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?
2.你知道還有那些事件可以用正負數表示允許誤差嗎?請舉例.
五.小結。
1.本節課你有那些收獲?
2.還有沒解決的問題嗎?
六.應用與拓展。
1.必做題:
教科書5頁習題4.5.:6.7.8題。
2.選做題。
1).甲冷庫的溫度是―12°c,乙冷庫的溫度比甲冷酷低5°c,則乙冷庫的溫度是.
七年級數學教案有理數的加法大全(15篇)篇十二
1、本節在引入有理數減法時花了較多的時間,目的是讓學生有充分的思考空間與時間進行探索,法則的得出,是在經歷從實際例子到抽象的過程中形成種,減法法則的歸納得出是本節課的難點,在這個過程中,設計了師生的交流對話,教師適時、適度的引導,也體現教師是學生學習的引導者、伙伴的新型師生關系。
2、在教學設計中,除了考慮學生探索新知的需要,還考慮學生對法則的理解和掌握是建立在一定量的練習基礎之上的,因此,在例題中增加了一道實際問題,讓學生在解決實際間題過程中培養運算能力。另外教師引導(提倡)學生進行解題后的反思,意在逐步培養學生思維的全面性、系統性。在反思的基礎上又讓學生規律,目的是讓學生順利地掌握法則,并達到熟練運用的程度。
七年級數學教案有理數的加法大全(15篇)篇十三
1.同號相加,取相同符號,并把絕對值相加。
2.絕對值不等的異號相加,取絕對值較大的加數符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
4.相反數相加結果一定得0。
注意。
一是確定結果的符號;二是求結果的絕對值.在進行有理數加法運算時,首先判斷兩個加數的符號:是同號還是異號,是否有0.從而確定用那一條法則。在應用過程中,一定要牢記“先符號,后絕對值”,熟練以后就不會出錯了.多個有理數的加法,可以從左向右計算,也可以用加法的運算定律計算,但是在下筆前一定要思考好,哪一個要用定律哪一個要從左往右計算.
減法。
法則。
有理數減法法則:減去一個數,等于加上這個數的相反數。其中:兩變:減法運算變加法運算,減數變成它的相反數做加數。一不變:被減數不變。可以表示成:a-b=a+(-b)。
乘法。
法則。
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘。例:(-5)×(-3)=15(-6)×4=-24。
(2)任何數同0相乘,都得0。例:0×1=0。
(4)幾個數相乘,有一個因數為0時,積為0。例:3×(-2)×0=0。
(5)乘積為1的兩個有理數互為倒數(reciprocal)。(乘積為-1的互為負倒數)例如,—3與—1/3,—3/8與—8/3。
除法。
法則。
(1)除以一個數等于乘以這個數的倒數。(注意:0沒有倒數)。
(2)兩數相除,同號為正,異號為負,并把絕對值相除。
(3)0除以任何一個不等于0的數,都等于0。
注意:
0在任何條件下都不能做除數。
七年級數學教案有理數的加法大全(15篇)篇十四
《有理數的加法》是有理數混合運算的第一堂課。正因為萬事開頭難,可見這堂課在接下來的教學中起著非常重要的指向作用。下面是我上這堂課的總結:
一.在引入部分和同學們共同探討書上的問題,采用了讓學生相互先探討的方法,發現學生非常的投入,課堂氣氛被充分調動起來了。由于問題的難度一下跨越太大,太抽象,所以在教學中采用了動畫解析的過程,更為形象具體,讓問題深入淺出,容易讓學生接受。
二.在一些細節部分處理到位。比如說解應用題的步驟,應將它的完整步驟都在黑板上演示一下。電子白板大大的提高了效率和課堂容量。
三.在推導有理數加法法則時,學生的回答讓學生說完他的思路,然后引導他將其他情況補充完整。這個說明課堂應變能力十分重要,整個課堂中,我注意力十分集中,真是耳聽八方,眼觀四路。
四.整堂課的語言需要改進,應更加精練,簡潔。本堂是概念課,對于概念課來說,概念不要重復太多遍,尤其是一些說出來比較拗口的概念,容易混淆,所以當表述的差不多的時候就可以寫出來,不必在這個問題上糾纏不清。這點需要改進。說,讀,寫結合,增強記憶。
七年級數學教案有理數的加法大全(15篇)篇十五
2?培養學生準確地運算能力,并適當地滲透特殊與一般的辨證關系的思想。
重點和難點:正確地求出代數式的值。
一、從學生原有的認識結構提出問題。
1?用代數式表示:(投影)。
(1)a與b的和的平方;(2)a,b兩數的平方和;。
(3)a與b的和的50%?
2?用語言敘述代數式2n+10的意義?
3?對于第2題中的代數式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)。
若學校有15個班(即n=15),則添置排球總數為多少個?若有20個班呢?
二、師生共同研究代數式的值的意義。
2?結合上述例題,提出如下幾個問題:
(1)求代數式2x+10的值,必須給出什么條件?
(2)代數式的值是由什么值的確定而確定的?
(3)求代數式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?
下面教師結合例題來引導學生歸納,概括出上述問題的答案?(教師板書例題時,應注意格式規范化)。
例1當x=7,y=4,z=0時,求代數式x(2x-y+3z)的值?
解:當x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)。
=7×(14-4)。
=70?
注意:如果代數式中省略乘號,代入后需添上乘號。