教學工作計劃是教師在教學過程中,根據學科知識體系和學生發展規律,對教學內容進行科學梳理和系統設計。請大家關注下面的范文,通過對教學工作計劃的分析和研究,可以加深對教學設計的理解和思考。
相似三角形的判定教案大全(15篇)篇一
本章有以下幾個主要內容:
一、比例線段。
(1)線段比:用同一長度單位度量兩條線段a,b,把他們長度的比叫做這兩條線段的比。
(2)比例線段:在四條線段a,b,c,d中,如果線段a,b的比等于線段c,d的比,那么,這四條線段叫做成比例線段。簡稱比例線段。
(3)比例中項:如果a:b=b:c,那么b叫做a,c的比例中項。
(4)黃金分割:把一條線段分成兩條線段,如果較長線段是全線段和較短線段的比例中項,那么][這種分割叫做黃金分割。這個點叫做黃金分割點。
頂角是36度的等腰三角形叫做黃金三角形。
寬和長的比等于黃金數的矩形叫做黃金矩形。
(5)比例的性質。
基本性質:內項積等于外項積。(比例=====等積)。主要作用:計算。
合比性質,主要作用:比例的互相轉化。
等比性質,在使用時注意成立的條件。
平行線等分線段------平行線分線段成比例--------平行于三角形一邊的直線截其他兩邊(或兩邊延長線),所截線段對應成比例------(預備定理)平行于三角形一邊的直線和其他兩邊(或兩邊延長線)相交,所截三角形與原三角形相似------相似三角形的判定:類比于全等三角形的判定。
1、定義:相似三角形對應角相等。
對應邊成比例。
2、相似三角形對應線段(對應角平分線、對應中線、對應高等)的比等于相似比。
4、相似三角形面積的比等于相似比的平方。
四、圖形的位似變換。
1、幾何變換:平移,旋轉,軸對稱,相似變換。
----2、相似變換:把一個圖形變成另一個圖形,并保持形狀不變的幾何變換叫做相似變換。
----3、位似變換:兩個圖形不但相似,而且對應點連線過同一點的相似變換叫做位似變換。這兩個圖形叫做位似圖形。
4、?位似變換可把圖形放大或者縮小。
5、外位似(同向位似圖形)位似中心在對應點連線外的位似叫外位似。這兩個圖形叫同向位似圖形。
內位似(反向位似圖形)位似中心在對應點連線上的位似叫內位似。這兩個圖形叫反向位似圖形。
6、以原點為位似中心,相似比為k,原圖形上點的坐標(x,y)則同向位似變換后對稱點的坐標為(kx,ky)。
以原點為位似中心,相似比為k,原圖形上點的坐標(x,y)??反向位似變換后對稱點的坐標為(-kx,-ky)。
相似三角形的判定教案大全(15篇)篇二
掌握全等三角形的判定定理邊邊邊,能運用該定理解決實際問題。
探索三角形全等的條件,以及運用邊邊邊定理畫一角等于已知角
學生合作探究法、教師講解結合談話法等綜合教學方法
黑板板書教學
階段
導入部分
采用復習導入,教師首先提問學生回顧全等三角形的定義,以及全等三角形的性質。
學生在復習以上知識的條件下教師做出解釋,上節課我們已經學習了三角形在滿足三邊對應相等,三角對應相等,則兩三角形全等,那么在實際的運用過程中,需要這么多條件運用會很不方便,那么我們很容易想到,能不能簡化條件,得出三角形全等呢?由此引出課題全等三角形的判定。
階段
課堂教學設計
課程新授
教師讓學生大膽想象,可以從一組對應關系相等開始探究,逐步上升到兩組對應關系相等三組對應關系相等。
但是為了節約時間,可以讓學生從兩組開始,如若兩組都不行,那一組肯定也不行,反之如若兩組條件就足夠了,再回頭看看一組的'情況。
接下來學生在教師的提問下思考二組對應條件的所有可能的情況,預設會有思考不全面的同學,教師即使揭示在一組邊與一組角相等的情況下,邊與角的關系可以為相鄰,也有可能為相對。
學生在教師的提示下,探索發現滿足兩組對應關系相等的三角形不一定全等,由此可以斷定一組對應關系相等也不能作為判定三角形全等的條件。接下來直接考慮三組對應相等關系的情況。
首先引導學生對三組對應關系相等進行分類。
預設學生部分可以全部考慮到,部分學生考慮不周到,這時教師可以請會的同學展示被同學忽略的情況即兩組角與一組對邊對應相等時,邊可以為對邊,也可以為鄰邊。
本節課將引導學生探索三邊相等的情形,有了前面兩組對應相等的經驗,預設學生根據尺規作圖可以畫出三邊等于已知三角形的三角形,接下來通過三角形全等的定義,讓學生動手操作進行驗證,發現可以完全重合,由此我們得到三組邊對應相等的三角形全等。即sss,教師解釋s為英文邊,side的首字母。
接下來請同學說出已知三角形與所作三角形之間存在的對應相等關系,預設學生可以很輕易說出。
由此教師揭示,實際上我們還學回了一個做角等于一只角的另外一種做法,即運用尺規作圖畫一角等于已知角。接下來,教師稍作解釋,請學生探究討論作圖步驟。看誰的最簡便。
學生探索過后,教師請學生回答自己的作圖步驟,最后由教師板書最簡易的作圖步驟。
之后我將用練習的方式,加深同學對邊邊邊判定定理的理解并加強應用能力。
作業為書上的練習第二題,以及課后作業的第四題對應基礎性練習即鞏固性練習。
采用歸納式的板書設計,主要板書兩種即三種對應關系相等的種類,邊邊邊判定定理的內容以及畫一角等于已知角的步驟以及重要練習的過程。
本結課內容比較多,主要體現在全等三角形判定的探索過程,為了節約時間,我選擇讓學生直接從兩個條件開始探究,同時也不影響學生理解,教師主要以引導為主,學生自主探索學習。
相似三角形的判定教案大全(15篇)篇三
比例線段在平面幾何計算和證明中,應用十分廣泛,相對于已學的兩條線段相等關系而言,四條線段成比例關系對學生分析問題的能力、綜合解題的能力要求更高。在學生學完“相似三角形”一章后,我們及時組織了兩節復習課,第一節課著重復習比例線段的基本知識及基本技能,第二節課則采取“探究式教學”,培養學生的實踐能力、探索能力,收到了較好的效果。
我們認為“探究式教學”注重學生自己提出問題或自己提出解決問題的方法、尋找問題解決的途徑、體驗解決問題的過程,從而提高解決問題的能力,逐步改變學生的學習方式。在初中數學教學中,開展探究式教學活動,既是對教師的教學觀念和教學能力的挑戰,也是培養學生創新意識和實踐能力的重要途徑。下面是這節課的過程描述及課后反思。
課的設計意圖。
在數學課堂中開展探究式學習是接受性學習的補充,它有效地促進了學生學習方式的改變,學生從被動的接受性學習變為主動的探究性學習。本案例力爭在以下三個方面有所體現:
1??尊重學生主體地位。
本課以學生的自主探究為主線:課前學生自己對比例線段的運用進行整理。這樣不僅復習了所學知識,而且可以使學生逐漸學會反思、總結,提高自主學習的能力;課堂上學生親身體驗“實驗操作—探索發現—科學論證”獲得知識(結論)的過程,體驗科學發現的一般規律;解決問題時學生自己提出探索方案,學生的主體地位得到了尊重;課后學有余力的學生繼續挖掘題目資源,發展的眼光看問題,觀察運動中的“形異實同”,提高學習效率,培養學生思維的深刻性。
2??教師發揮主導作用。
在探究式教學中教師是學生學習的組織者、引導者、合作者、共同研究者,鼓勵學生大膽探索,引導學生關注過程,及時肯定學生的表現,鼓勵創新,哪怕是微小的進步或幼稚的想法都給予熱情的贊揚。備課時思考得更多的是學生學法的突破,上課時教師只在關鍵處點撥,在不足時補充。三次恰到好處的電腦演示,向學生展示了電腦的省時、高效以及對數學實驗的巨大幫助,推薦給他們運用電腦技術的學習研究方法。教師與學生平等地交流,創設民主、和諧的學習氛圍,促進教學相長。
3??提升學生課堂關注點。
學生在體驗了“實驗操作——探索發現——科學論證”的學習過程后,從單純地重視知識點的記憶、復習變為有意識關注學習方法的掌握,數學思想的領悟。如在原問題的取點中教師小結了從特殊到一般的歸納,學生在探究矩形的比值時就能意識地把解決特殊問題的策略、方法遷移到解決一般問題中去。在課堂小結中,學生也談到了這點體會,而且還感悟了一題多解、一題多變等數學學習方法。
兩點思考。
“探究式教學”意在通過給學生創設實踐、探索的機會,讓學生自覺地改變原有的被動的學習方式,培養學生的積極主動的探索創新精神。結合二期課改要求本案例的嘗試也引發了一些值得繼續探討的問題。
本案例是在前面的新課學習以接受性學習為主的基礎上進行的,在本課的復習中對探究性學習做了必要的補充。就本課而言是以探究性學習為主,由此反思:在平時的新課學習中如何落實兩者的主輔關系呢?在進行探究性學習時如何照顧到班級學生參差不齊的各個層面,使每個學生都有所獲呢?對此我們還應該作更多的思考和實踐。
相似三角形的判定教案大全(15篇)篇四
一、知識回顧。(小黑板出示)。
1.我們已學過了哪些判定三角形相似的方法?
二、動腦筋。
鼓勵學生動手畫圖,認真思考書中問題,引導同學們討論得出判定定理3:兩邊對應成比例且夾角相等的兩個三角形相似。
指名說一說:這個定理的條件和結論各是什么?關鍵處是什么?
同桌完成課本上的做一做。然后指名在班上說。教師及時給予表揚和肯定。
三、出示例題2.要求學生嘗試完成。不會做的自己看書,然后再做。教師行巡。
回輔導,適時指點練習中容易出現的問題。最后指名板演,集體訂正。
四、出示課本78頁中的b組2題作為典例分析。
要求學生憑眼睛看這兩個三角形相似嗎?再通過計算他們的對應邊是否成比例。有一個角對應相等嗎?他們相似嗎?同桌討論各自的心得。從這個例子你能得出什么結論?指名說。
五、出示b組1題作為典例分析。要求學生先自學,再試著做一做。最后師。
規范板書全過程。
六、啟迪學生除這種解法外,你還能用別的方法來證明嗎?鼓勵學生用多種方。
法解題。
七、引導學生歸納解題所得。
八、總結整堂課內容。
九、鞏固練習。完成教材第78--79頁練習1、2題。
十、作業:基本訓練78--79頁a組1-2題。教師巡回輔導。
我的反思:。
成功之處:.
1、課前對舊知識的回顧,以防止負遷移現象,特別是做一做的設計注重了相似三角形中對應元素的訓練,為潛能生設置了一個障礙,以培養學生的合理想象力。
2、整堂課體現了以學生為主體的`教學理念。教師的點撥很到位,對定理的剖析突徹,在教學過程中注重了規范板書,為學生起到了示范作用。
4、作業的設計具有層次性。做到了突出重點,突破難點。
不足之處:。
1、巡回輔導時未顧及到全局,關鍵是時間太緊。
2、時間分配不夠合理,運用定理解題時間花的太多,導致作業不能當堂完成。
3、教師語言不夠精煉,重復話較多。有待于在今后的工作中不斷提高,不斷改進。
相似三角形的判定教案大全(15篇)篇五
本節課的教學設計主要從以下三個方面來考慮的:
一、尊重學生主體地位。
本課以學生的自主探究為主線:課前學生自己對比例線段的運用進行整理。這樣不僅復習了所學知識,而且可以使學生逐漸學會反思、總結,提高自主學習的能力;課堂上學生親身體驗“實驗操作—探索發現—科學論證”獲得知識(結論)的過程,體驗科學發現的一般規律;解決問題時學生自己提出探索方案,學生的主體地位得到了尊重;課后學有余力的學生繼續挖掘題目資源,發展的眼光看問題,觀察運動中的“形異實同”,提高學習效率,培養學生思維的深刻性。
2教師發揮主導作用。
在探究式教學中教師是學生學習的組織者、引導者、合作者、共同研究者,鼓勵學生大膽探索,引導學生關注過程,及時肯定學生的表現,鼓勵創新,哪怕是微小的進步或幼稚的想法都給予熱情的贊揚。備課時思考得更多的是學生學法的突破,上課時教師只在關鍵處點撥,在不足時補充。教師與學生平等地交流,創設民主、和諧的學習氛圍,促進教學相長。
3提升學生課堂關注點。
學生在體驗了“實驗操作——探索發現——科學論證”的學習過程后,從單純地重視知識點的記憶、復習變為有意識關注學習方法的掌握,數學思想的領悟。如在原問題的取點中教師小結了從特殊到一般的歸納,學生在探究矩形的比值時就能意識地把解決特殊問題的策略、方法遷移到解決一般問題中去。在課堂小結中,學生也談到了這點體會,而且還感悟了一題多解、一題多變等數學學習方法。
相似三角形的判定主要介紹了三種方法以及相似三角形的預備定理,從上下來的結果來看,不是很理想,絕大部分學生對定理的應用不是很熟練,特別對于“兩邊對應成比例且夾角相等”不能靈活運用,夾角也不能準確找到.我想問題的主要原因在于學生對圖形的認知不深,對定理的理解不透,一味死記結論.不能理解每個量所表示的含義.我想在下一階段中應培養他們認識圖形的能力,合情推理的能力,爭取這方面有所提高。
相似三角形的判定教案大全(15篇)篇六
4、相似三角形具有傳遞性:如果兩個三角形分別于同一個三角形相似,那么這兩個三角形也相似。
5、相似三角形內切圓、外接圓直徑比和周長比都和相似比相同,內切圓、外接圓面積比是相似比的平方。
6、全等三角形可以看做相似比為1的特殊的相似三角形,凡是全等的三角形都相似。
相似三角形的判定教案大全(15篇)篇七
(1)平行于三角形一邊的直線和其他兩邊相交,所構成的三角形與原三角形相似。(簡敘為兩角對應相等兩三角形相似).
(2)如果一個三角形的兩條邊和另一個三角形的兩條邊對應成比例,并且夾角相等,那么這兩個三角形相似(簡敘為:兩邊對應成比例且夾角相等,兩個三角形相似.)(3)如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似(簡敘為:三邊對應成比例,兩個三角形相似.)。
相似三角形的判定教案大全(15篇)篇八
《相似三角形的判定1》是湘教版義務教育課程標準教科書九年級數學第三章《圖形的相似》第四節《相似三角形的判定和性質》的內容。本節課是第二課時。
《相似三角形的判定》是在學生認識相似圖形,了解相似多邊形的性質的基礎上進行學習的,是本章的重點內容。本課時首先利用“平行于三角形一邊的直線與其他兩邊相交,截得的三角形與原三角形相似。”證明兩個三角形相似,然后引導學生通過測量來探究得到兩角分別相等的兩個三角形相似,繼而引導出相似三角形的判定:“兩角分別相等的兩個三角形相似”。通過類比的方法進一步研究三角形相似的條件,是今后進一步研究其他圖形的基礎。
通過這節課的教學,我有以下幾點反思:成功方面:
1、絕大多數學生都能參與到數學活動中來。
5、通過學習,部分學生能運用本節課所學的知識進行相關的計算和證明;。
6、本節課基本調動了學生積極思考、主動探索的積極性。存在的不足之處是:
2、少數學生在自主探究中,不知如何觀察,如何驗證;。
3、少數學生在探究兩角分別相等的兩個三角形相似定理時,不會用學過的知識進行證明;。
4、學生做練習時不細心,出現常規錯誤,做題的正確率較低;。
5、由于學生基礎差,配合不夠默契,導致課堂氣氛不活躍,教學效果一般。
相似三角形的判定教案大全(15篇)篇九
(3)如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似(簡敘為:三邊對應成比例,兩個三角形相似.);4如果兩個三角形的兩個角分別對應相等(或三個角分別對應相等),則有兩個三角形相似(簡敘為:兩角對應相等,兩個三角形相似.).直角三角形相似的判定定理:(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似[2] ;(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似.
兩個全等的三角形全等三角形是特殊的相似三角形,相似比為1:1
任意一個頂角或底角相等的兩個等腰三角形兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。
兩個等邊三角形兩個等邊三角形,三個內角都是60度,且邊邊相等,所以相似。
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形由于斜邊的高形成兩個直角,再加上一個公共的角,所以相似。
相似三角形的判定教案大全(15篇)篇十
本節內容的重點是定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據,此定理為證明線段相等提供了又一種方法,這是本節的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質,在直角三角形中找邊和角的等量關系經常用到此推論.
本節內容的難點是性質與判定的區別。等腰三角形的性質定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經常混淆,幫助學生認識判定與性質的區別,這是本節的難點.另外本節的文字敘述題也是難點之一,和上節結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.
本節課方法主要是“以學生為主體的討論探索法”。在數學中要避免過多告訴學生現成結論。提倡鼓勵學生討論解決問題的方法,引導他們探索數學的內在規律。具體說明如下:
(1)參與探索發現,領略知識形成過程。
學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發言.最后找一名學生用文字口述定理的內容。這樣很自然就得到了定理.這樣讓學生親自動手實踐,積極參與發現,滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。
(2)采用“類比”的學習方法,獲取知識。
由性質定理的學習,我們得到了幾個推論,自然想到:根據定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論出來。如果學生提到的不完整,可以做適當的點撥引導。
(3)總結,形成知識結構。
第12頁?。
相似三角形的判定教案大全(15篇)篇十一
1、教學引入照顧到了到多數的同學,培養了學生的動手測量和計算能力。利用三角板畫平行線、相交線,通過測量對比,學生基本能全員參與,調動了學生學習的興趣和積極性。學生更易于從圖形當中得到結論,這樣引入能很好的使學生體驗到生活中的數學知識。通過后來練習及作業反饋、九年級四班的同學也比較容易得出了平行線分線段成比例定理這個結論,說明這種引入的方法是成功的。
二、三節課鞏固深入,杜絕傳統的“學生在一節課內學完一個知識點就做相應的練習,模仿套用知識而不需選擇,當學完全部相似知識點進行綜合練習時,容易產生混淆”的現象。本節課只學習了平行線分線段成比例定理的內容,以及由此演變而形成的“a字型”圖和“x型圖”從一開始就擺脫學生的依賴心理,把問題拋給學生,有效的鍛煉了學生的思維,同時還利用全等三角形的識別類比相似三角形的識別,學生容易理解。
3、注意到了推理的邏輯性和嚴密性。教學中在結論的推導得出過程中,注意了數學符號語言的應用和書寫,保證了證明的規范性和作圖的合理性。這一點主要表現在“a字型”圖的證明上,學生通過幾分鐘的短暫討論,書寫得出這個定理。在學生親自操作、探究的過程中,獲得三角形相似的第一個簡單的識別方法;培養學生提出問題、解決問題的能力;從整堂課學生的表現看到,這節課基本上實現了以上目標。
本節課盡管在以上幾個方面做得較為成功,但仍然有些地方值得商榷。課后,經過教研組同志的集體評課以及自我反思,認為需要從以下幾個方面改進:
1、在平行線分線段成比例定理的得出過程中,更應當注意圖形的一般情況,不應當以點帶面。表現在如果兩線相交構成的是直角梯形這種情況,而在課堂教學中,由于時間關系、學生關系,在上課作圖未涉及到這種情況,這一點需要改進。
2、在證明“a字型”圖的結論過程中,沒有必要證明de是三角形中位線這種情況,因為它的證明方法和后面的都相同。如果這樣做的話,會浪費大量的時間,導致課堂教學前松后緊。
3、有些學生操作計算的速度太慢了,沒有時間等他們探索得出結論,而大多數的同學已經得出了結論。這樣可能使他們不能充分理解這節課的內容。
4、教學的方式過于單一,學生的參與面較低。主要是我沒有調動好他們的情緒,說明我對課堂的駕馭能力還需要提高。
總之,本節課的教學任務已基本完成,但站在更高的角度來思考,反映出我還有些急燥,在課后及聯系中,應該把這種題型至少要細分為基本圖形的形成、基本圖形的鞏固、基本圖形的拓展應用三個層次,逐步推進教學,效果可能會更好。
相似三角形的判定教案大全(15篇)篇十二
定義法:在同一三角形中,有兩條邊相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
除了以上兩種基本方法以外,還有如下判定的方式:。
1.在一個三角形中,如果一個角的平分線與該角對邊上的中線重合,那么這個三角形是等腰三角形,且該角為頂角。
2.在一個三角形中,如果一個角的平分線與該角對邊上的高重合,那么這個三角形是等腰三角形,且該角為頂角。
3.在一個三角形中,如果一條邊上的中線與該邊上的高重合,那么這個三角形是等腰三角形,且該邊為底邊。顯然,以上三條定理是“三線合一”的逆定理。
4.有兩條角平分線(或中線,或高)相等的三角形是等腰三角形。
相似三角形的判定教案大全(15篇)篇十三
【過程與方法】。
通過借助三角形全等,特殊三角形,比例的應用探究三角形相似,培養學生的對于前后知識的運用能力和知識遷移能力。
【情感態度與價值觀】。
體會數學的特點,了解數學的價值。
二、教學重難點。
【重點】。
【難點】。
知道邊角邊和邊邊角在判斷上的不同。
三、教學過程。
(一)復習舊知,導入新課。
ppt呈現若干三角形并標注一些邊和角(可以出現全等和相似結合一共三個三角形的情形)。
問題1:你能找出其中的全等三角形或者相似三角形嗎?能告訴老師你判斷的理由?
師生總結:回顧了全等三角形的判斷方法,其次就是對于相似三角形有了直觀的感知。
問題2:你能記得的全等三角形判斷方法有多少?
師生總結:sss,sas,asa,aas。
問題3:你覺得如果要判斷兩個三角形相似,能用上述的方法嗎?引入課題。
(二)結合知識,生成原理。
問題1:結合相似三角形的特征,全等三角形的判定方法,提出你們認為能夠證明三角形相似的方法嗎?說明理由。
師生活動:sss,sas……從相似三角形的特點,直觀上來說都是邊的特點。
問題2:sss能夠證明嗎?你們試著在練習本上畫畫看。
師生活動:三邊成比例能夠實現。
(三)動手嘗試,深化原理。
問題1:大家能不能結合我們在課堂開始之前從一個三角形出發,在練習本上畫一個全等三角形和一個相似三角形,并以前后四人為一小組,相互討論一下各自的嘗試過程,嘗試著說明“兩邊成比例且夾角相等的兩個三角形相似”能夠證明相似三角形。
師生總結:兩邊成比例且夾角相等的兩個三角形相似。
師生活動:讓學生以小組為單位,比拼誰更快更準。
(五)小結作業。
小結:今天你有什么收獲?
作業:試一試還有沒有其他可能判定三角形相似方法呢?
相似三角形的判定教案大全(15篇)篇十四
在前面,學生已經學過了圖形的全等和全等三角形的有關知識,也研究了幾種圖形的變換。全等是相似的一種特殊情況,從這個意義上講,研究相似比研究全等更具有一般性,所以這一章研究的問題實際上是在前面研究圖形的全等和一些全等變換基礎上的拓廣和發展。
在后面,學生還要學習“銳角三角函數”和“投影與視圖”的知識,學習這些內容,都要用到相似的知識。在物理中,學習力學、光學等,也要用到相似的知識。因此這些內容也是今后學習所必須德文基礎知識。另外,在實際生活中的建筑設計、測量、繪圖等許多方面,也都要用到相似的有關知識。因此這一章內容對于學生今后從事各種實際工作也具有重要作用。
學生已經學過了圖形的全等和全等三角形的有關知識,也研究了幾種圖形的變換。“全等”是圖形間的一種關系,具有這種關系的兩個圖形疊合在一起,能夠完全重合,也就是它們的形狀、大小完全相同。“相似”也是指圖形間的一種相互關系,但它與“全等”不同,這兩個圖形僅僅形狀相同,大小不一定相同,其中一個圖形可以看成是另一個圖形按一定的比例放大或縮小得到,這種變換是相似變換。當放大或縮小的比例為1時,這兩個圖形就是全等的,全等是相似的一種特殊情況。學生對相似三角形的學習應該是比較輕松的。
教學目標:
根據學生已有的認知基礎和教材所處的地位和作用,確定本節課的教學目標為:
1、知識技能掌握判定兩個三角形相似的方法:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似。
2、數學思考滲透數學中普遍存在著相互聯系、相互轉化,使學生感悟類比的數學方法;經歷探索兩個三角形相似條件的過程,體驗畫圖操作、觀察猜想、分析歸納結論的過程;在定理論證中,體會轉化思想的應用。
3、解決問題會運用“兩個角對應相等的兩個三角形相似”的方法進行簡單推理。
4、情感態度從認識上培養學生從特殊到一般的方法認識事物,從思維上培養學生用類比的方法展開思維;通過畫圖、觀察猜想、度量驗證等實踐活動,培養學生獲得數學猜想的經驗,激發學生探索知識的興趣。
教學重點:
教學難點:
探究三角形相似的條件;運用三角形相似的判定理解決問題。
教法:數學是一門培養人的思維,發展人的思維的重要學科,教學中不僅要教知識,更重要的是教方法。什么樣的教法必帶來相應的學法。一節課不能是單一的教法,因此,在講授本節課時,我將采用以下方法進行教學:
(1)類比教學法:類比全等三角形的判定方法——進行探究。
(2)轉化教學法:證明相似三角形的判定時,通過作全等三角形,把要證明的問題轉化為我們已經解決的問題,從而把問題從未知轉化為已知,從復雜轉化為簡單。
(3)情景教學法:創設問題情境,以學生感興趣的,并容易回答的問題為開端,讓學生在各自熟悉的場景中輕松、愉快地回答老師提出的問題后,帶著成功的喜悅進入新課的學習。
(4)啟發性教學法:啟發性原則是永恒的。在教師的啟發下,讓學生成為課堂上行為的主體。
相似三角形的判定教案大全(15篇)篇十五
本節課的設計先讓學生動手操作以便使學生對三角形的內角和有一定感性認識,然后再根據拼圖說出結論成立的理由,由淺入深,循序漸進,學生易接受.教師引導學生對三角形的三個內角進行拼合,可以出現不同的方法,這樣能讓學生充分發揮白己的主動性和創新能力。
[講授效果反思]。
組織學生進行探索或分組討論,經過討論找到不同的解決方法.在解決問題的過程中,關注學生在推理過程中語言使用的準確性,引導學生用規范的格式進行書寫。
[師生互動反思]。
無論是例題還是習題的教學均采用“嘗試一交流一討論”的方式,充分發揮學生的主體性,教師起引導、點撥的作用。