在編寫高一教案時,教師需要注重教學方法的選擇和教學資源的合理利用,以提高教學效果。對于編寫高一教案來說,以下是一些典型范文,可以為教師們提供一些編寫思路和參考建議。
高一數學教案設計(模板16篇)篇一
2、過程與方法目標:通過讓學生探究點、線、面之間的相互關系,掌握文字語言、符號語言、圖示語言之間的相互轉化。
3、情感、態度與價值目標:通過用集合論的觀點和運動的觀點討論點、線、面、體之間的相互關系培養學生會從多角度,多方面觀察和分析問題,體會將理論知識和現實生活建立聯系的快樂,從而提高學生學習數學的興趣。
二、教學重點和難點。
重點:點、線、面之間的相互關系,以及文字語言、符號語言、圖示語言之間的相互轉化。
難點:從集合的角度理解點、線、面之間的相互關系。
三、教學方法和教學手段。
四、教學過程。
教學環節教學內容師生互動設計意圖。
新課講解。
基礎知識。
能力拓展。
探索研究一、構成幾何體的基本元素。
點、線、面。
二、從集合的角度解釋點、線、面、體之間的相互關系。
點是元素,直線是點的集合,平面是點的集合,直線是平面的子集。
三、從運動學的角度解釋點、線、面、體之間的相互關系。
1、點運動成直線和曲線。
2、直線有兩種運動方式:平行移動和繞點轉動。
3、平行移動形成平面和曲面。
4、繞點轉動形成平面和曲面。
5、注意直線的兩種運動方式形成的曲面的區別。
6、面運動成體。
四、點、線、面、之間的相互位置關系。
1、點和線的位置關系。
點a。
2、點和面的位置關系。
3、直線和直線的位置關系。
4、直線和平面的位置關系。
5、平面和平面的位置關系。通過對幾何體的觀察、討論由學生自己總結。
引領學生回憶元素、集合的相互關系,討論、歸納點、線、面之間的相互關系。
通過課件演示及學生的討論,得出從運動學的角度發現點、線、面之間的相互關系。
引導學生由生活中的實際例子總結出點、線、面之間的相互位置關系,讓學生有個感性認識。培養學生的觀察能力。
培養學生將所學知識建立相互聯系的能力。
讓學生在觀察中發現點、線、面之間的相互運動規律,為以后學習幾何體奠定基礎。
培養學生將學習聯系實際的習慣,鍛煉學生由感性認識上升為理性知識的能力。
課堂小結1、學習了構成幾何體的基本元素。
2、掌握了點、線、面之間的相互關系。
3、了解了點、線、面之間的相互的位置關系。由學生總結歸納。培養學生總結、歸納、反思的學習習慣。
課后作業試著畫出點、線、面之間的幾種位置關系。學生課后研究完成。檢驗學生上課的聽課效果及觀察能力。
附:1.1.1構成空間幾何體的基本元素學案。
(一)、基礎知識。
7、你能說出構成幾何體的幾個基本元素之間的關系嗎?
(二)、能力拓展。
(三)、探索與研究。
高一數學教案設計(模板16篇)篇二
理解函數的奇偶性及其幾何意義。
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題。
【情感態度與價值觀】。
體會指數函數是一類重要的函數模型,激發學生學習數學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;
(二)新課教學。
(1)偶函數(evenfunction)。
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2、具有奇偶性的函數的圖象的特征。
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱。
3、典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數奇偶性的格式步驟:
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數。
(三)鞏固提高。
1、教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規律:
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱。
說明:這也可以作為判斷函數奇偶性的依據。
(四)小結作業。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規律:
偶函數的圖象關于y軸對稱;
奇函數的`圖象關于原點對稱。
高一數學教案設計(模板16篇)篇三
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
三角函數的誘導公式是普通高中課程標準實驗教科書(人教a版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六)。本節是第一課時,教學內容為公式(二)、(三)、(四)。教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四)。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。為此本節內容在三角函數中占有非常重要的地位。
本節課的授課對象是本校高一(x)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容。
(1)基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(4)個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀。
1、教學重點:理解并掌握誘導公式。
2、教學難點:正確運用誘導公式,求三角函數值,化簡三角函數式。
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學法、預期效果等三個方面做如下分析。
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質。
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅。
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情。如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題。
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習。
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題。
高一數學教案設計(模板16篇)篇四
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題。
【情感態度與價值觀】。
體會指數函數是一類重要的函數模型,激發學生學習數學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;。
(二)新課教學。
(1)偶函數(evenfunction)。
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;。
2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2.具有奇偶性的函數的圖象的特征。
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱。
3.典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數奇偶性的格式步驟:
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;。
2確定f(-x)與f(x)的關系;。
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數。
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規律:
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱。
(四)小結作業。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規律:
偶函數的圖象關于y軸對稱;。
奇函數的`圖象關于原點對稱。
高一數學教案設計(模板16篇)篇五
2結合的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期。
3會用代數方法求等函數的周期。
4理解周期性的幾何意義。
“周期函數的概念”,周期的求解。
1、是周期函數是指對定義域中所有都有,即應是恒等式。
2、周期函數一定會有周期,但不一定存在最小正周期。
例1、若鐘擺的高度與時間之間的函數關系如圖所示。
(1)求該函數的周期;
(2)求時鐘擺的高度。
例2、求下列函數的周期。
(1)(2)。
總結:(1)函數(其中均為常數,且的周期t=xx)。
(2)函數(其中均為常數,且的周期t=xx)。
例3、求證:的周期為。
且
總結:函數(其中均為常數,且的周期t=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數。
課后思考:能否利用單位圓作函數的圖象。
高一數學教案設計(模板16篇)篇六
一、教材分析(結構系統、單元內容、重難點)。
二、學生分析(雙基智能水平、學習態度、方法、紀律)。
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、
教學目的要求。
1.通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2.通過日常生活中的實例,了解數列的概念和幾種簡單的表示方法,了解數列是一種特殊的函數;理解等差數列、等比數列的概念,探索并掌握2種數列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3.理解不等式(組)對于刻畫不等關系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區域,并嘗試解決簡單的二元線性規劃問題。
4.幾何學研究現實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關系,并利用數學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互關系,了解空間直角坐標系。體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施。
積極做好集體備課工作,達到內容統一、進度統一、目標統一、例題統一、習題統一、資料統一;上好每一節課,及時對學生的思想進行觀察與指導;課后進行有效的輔導;進行有效的課堂反思。
一、教材分析(結構系統、單元內容、重難點)。
第1頁。
元一次不等式(組)與簡單的線性規劃問題及應用;。
二、學生分析(雙基智能水平、學習態度、方法、紀律)。
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求。
1.通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2.通過日常生活中的實例,了解數列的概念和幾種簡單的表示方法,了解數列是一種特殊的函數;理解等差數列、等比數列的概念,探索并掌握2種數列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3.理解不等式(組)對于刻畫不等關系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區域,并嘗試解決簡單的二元線性規劃問題。
4.幾何學研究現實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關系,并利用數學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互關系,了解空間直角坐標系。體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施。
一般說來,“教師”概念之形成經歷了十分漫長的歷史。楊士勛(唐初學者,四門博士)《春秋谷梁傳疏》曰:“師者教人以不及,故謂師為師資也”。這兒的“師資”,其實就是先秦而后歷代對教師的別稱之一。《韓非子》也有云:“今有不才之子……師長教之弗為變”其“師長”當然也指教師。這兒的“師資”和“師長”可稱為“教師”概念的雛形,但仍說不上是名副其實的“教師”,因為“教師”必須要有明確的傳授知識的對象和本身明確的職責。
一般說來,“教師”概念之形成經歷了十分漫長的歷史。楊士勛(唐初學者,四門博士)《春秋谷梁傳疏》曰:“師者教人以不及,故謂師為師資也”。這兒的“師資”,其實就是先秦而后歷代對教師的別稱之一?!俄n非子》也有云:“今有不才之子……師長教之弗為變”其“師長”當然也指教師。這兒的“師資”和“師長”可稱為“教師”概念的雛形,但仍說不上是名副其實的“教師”,因為“教師”必須要有明確的傳授知識的對象和本身明確的職責。積極做好集體備課工作,達到內容統一、進度統一、目標統一、例題統一、習題統一、資料統一;上好每一節課,及時對學生的思想進行觀察與指導;課后進行有效的輔導;進行有效的課堂反思。
第2頁。
要練說,先練膽。說話膽小是幼兒語言發展的障礙。不少幼兒當眾說話時顯得膽怯:有的結巴重復,面紅耳赤;有的聲音極低,自講自聽;有的低頭不語,扯衣服,扭身子??傊f話時外部表現不自然。我抓住練膽這個關鍵,面向全體,偏向差生。一是和幼兒建立和諧的語言交流關系。每當和幼兒講話時,我總是笑臉相迎,聲音親切,動作親昵,消除幼兒畏懼心理,讓他能主動的、無拘無束地和我交談。二是注重培養幼兒敢于當眾說話的習慣。或在課堂教學中,改變過去老師講學生聽的傳統的教學模式,取消了先舉手后發言的約束,多采取自由討論和談話的形式,給每個幼兒較多的當眾說話的機會,培養幼兒愛說話敢說話的興趣,對一些說話有困難的幼兒,我總是認真地耐心地聽,熱情地幫助和鼓勵他把話說完、說好,增強其說話的勇氣和把話說好的信心。三是要提明確的說話要求,在說話訓練中不斷提高,我要求每個幼兒在說話時要儀態大方,口齒清楚,聲音響亮,學會用眼神。對說得好的幼兒,即使是某一方面,我都抓住教育,提出表揚,并要其他幼兒模仿。長期堅持,不斷訓練,幼兒說話膽量也在不斷提高。
第3頁。
高一數學教案設計(模板16篇)篇七
2.能力目標:使學生具有使用函數模型研究生活中簡單的事物變化規律的能力。
3.情感目標:滲透數學來源于生活,運用于生活的思想。
重點讓學生理解現階段函數的概念,定義域的概念。
難點用函數模型去研究生活中簡單的事物變化規律時,如何確定定義域。
學情。
分析授課班級為高一年級的學生,有朝氣,有活力,愛實踐,愛生活。本課之前,學生已經學習了初中函數概念,為本課的學習打下基礎。
教法與學法教法:微課視頻中包含情境教學法、多媒體輔助教學法的使用。
1.動畫設計《世界在不斷的變化》。
2.專業錄頻軟件;
3.視頻后期處理軟件;
;
5.其它圖片、背景音樂。
課前準備。
教學過程。
環節設計:教師活動、學生活動、設計意圖。
環節一創設情境。
興趣導入首先讓學生觀看視頻《世界在不斷的變化》。
老師解說:這個世界在不斷的變化,有一句很有哲理的話“這個世界唯一沒有變化的就是這個世界一直在改變”。聰明的人類為了在這個不斷變化的世界中生存,想出了很多記錄世界變化規律的辦法。今天我們就來學習一個好辦法,它就是數學函數,函數是研究事物變化規律的數學模型之一。
1看視頻。
2聽老師解說,函數是研究世界變化規律的數學模型之一。
3了解函數的作用,對函數產生興趣。
通過讓學生觀看視頻,并對學生講解,讓學生了解函數是用來研究事物變化規律的數學模型之一,這樣學生能更深刻的理解函數的功能,即激發了學生學習熱情,又回顧初中學習的數學函數的定義。
在某一個變化過程中有兩個變更x和y,在某一法則的作用下,如果對于x的每一個值,y都有唯一的值與其相對應,就稱y是x的函數,這時x是自變量,y是因變量.用一個生活實例加深對知識的理解。
實例:到學校商店購買某種果汁飲料,每瓶售價2.5元,那么購買瓶數x,與應付款y之間存在一種對應關系y=2.5x.瓶數x在自然數集中每取定一個值,應付款y就有唯一一個值與其對應,我們可以運用對應關系y=2.5x去進行方便的運算。
在這個例子中,我們發現自變更x只有在自然數集中取值才有意義,其實如果我們細心研究所有已知函數,就會發現確定自變量x的取值范圍,是使用函數模型描述世界變化規律的前提.所以我們重新定義函數,將自變量x的取值范圍用集合d來表示.函數的定義:
知識總結。
(1)函數的概念。
(2)強調用函數來研究事物變化規律的前提是確定自變量x的取值范圍,即定義域。
學生回顧本次微課所學習的知識。讓學生回顧本節課學習內容,強化本節課重點,為下節課打下基礎。
環節四實例檢測。
實例:文具店出售某種鉛筆,每只售價0.12元,應付款額是購買鉛筆數的函數,當購買6支以內(含6支)的鉛筆時,請用表達式來表示這個函數.要求學生把做題結果拍成照片,發到郵箱,及時反饋.學生練習,并把做題結果拍成照片,發到我的郵箱,并通過qq與學生進行交流實例鞏固今天學習的函數概念。
高一數學教案設計(模板16篇)篇八
教學重點:理解等比數列的概念,認識等比數列是反映自然規律的重要數列模型之一,探索并掌握等比數列的通項公式。
教學難點:遇到具體問題時,抽象出數列的模型和數列的等比關系,并能用有關知識解決相應問題。
教學過程:
1.等差數列的通項公式。
2.等差數列的前n項和公式。
引入:1“一尺之棰,日取其半,萬世不竭。”
2細胞分裂模型。
3計算機病毒的傳播。
由學生通過類比,歸納,猜想,發現等比數列的特點。
進而讓學生通過用遞推公式描述等比數列。
讓學生回憶用不完全歸納法得到等差數列的通項公式的過程然后類比等比數列的通項公式。
注意:1公比q是任意一個常數,不僅可以是正數也可以是負數。
2當首項等于0時,數列都是0。當公比為0時,數列也都是0。
所以首項和公比都不可以是0。
3當公比q=1時,數列是怎么樣的,當公比q大于1,公比q小于1時數列是怎么樣的?
4以及等比數列和指數函數的關系。
5是后一項比前一項。
列:1,2,(略)。
小結:等比數列的通項公式。
1.教材p59練習1,2,3,題。
2.作業:p60習題1,4。
第二課時5.2.4等比數列(二)。
提問:等差數列的通項公式。
等比數列的通項公式。
1.討論:如果是等差列的三項滿足。
由學生給出如果是等比數列滿足。
2練習:如果等比數列=4,=16,=?(學生口答)。
如果等比數列=4,=16,=?(學生口答)。
3等比中項:如果等比數列。那么,
則叫做等比數列的等比中項(教師給出)。
4思考:是否成立呢?成立嗎?
成立嗎?
又學生找到其間的規律,并對比記憶如果等差列,
5思考:如果是兩個等比數列,那么是等比數列嗎?
如果是為什么?是等比數列嗎?引導學生證明。
6思考:在等比數列里,如果成立嗎?
如果是為什么?由學生給出證明過程。
列3:一個等比數列的第3項和第4項分別是12和18,求它的第1項和第2項。
解(略)。
列4:略:
練習:1在等比數列,已知那么。
2p61a組8。
高一數學教案設計(模板16篇)篇九
知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。
過程與方法:通過設置問題情境培養學生判斷、推斷的能力。
情感態度與價值觀:通過繪制和展示優美的函數圖象來陶冶學生的情操,通過組織學生分組討論,培養學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養學生善于探索的思維品質。
難點:函數奇偶性的判斷。
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
1、復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2、分別畫出函數f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
(1)對于函數,其定義域關于原點對稱:
如果______________________________________,那么函數為偶函數。
(2)奇函數的圖象關于__________對稱,偶函數的圖象關于_________對稱。
(3)奇函數在對稱區間的增減性;偶函數在對稱區間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數()是偶函數,則b=___________。
b3、已知,其中為常數,若,則。
_______。
b4、若函數是定義在r上的奇函數,則函數的圖象關于()。
(a)軸對稱(b)軸對稱(c)原點對稱(d)以上均不對。
b5、如果定義在區間上的函數為奇函數,則=_____。
c6、若函數是定義在r上的奇函數,且當時,,那么當。
時,=_______。
d7、設是上的奇函數,,當時,,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數,則常數____,_____。
本節主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。
高一數學教案設計(模板16篇)篇十
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質。
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
高一數學教案設計(模板16篇)篇十一
教科書第71—72頁的例1、“試一試”和“練一練”、練習十四的第1-3題。
1.教材讓學生在直觀的情境中想到轉化,并應用圖形的平移和旋轉知識進行圖形的等積,等周長的變形。
2.在解決實際問題過程中體會轉化的含義和應用的手段,感受轉化在解決這個問題時的價值。
3.進一步積累解決問題的經驗,增強解決問題的"轉化"意識,提高學好數學的信心。
感受“轉化”策略的價值,會用“轉化”的策略解決問題。
會用“轉化”的策略解決問題。
;學生每人一張例1的格子圖。
一、創設情境,感知策略。
1.談話導入。
(分別演示蝴蝶平移的過程,第二幅圖順時針和逆時針分別旋轉一次,第三幅圖從左往右順時針平移一周的過程)。
提問:(1)蝴蝶是按怎樣的順序變化而來的?
(2)花環兩次變化又是怎樣形成的?
(3)最后一幅又是怎樣變化的呢?
學生回答,師依次板書:平移,旋轉,順時針,逆時針。
二、合作交流,探究策略。
1.出示例1。
提問:這兩種平面圖形,我們以前學過嗎?(沒有)你覺得它們象什么呢?(生發揮想象力回答,但要說明的是平面圖形。)。
2.引導交流。
提問:你能從圖上準確地數出它們的面積分別是多少嗎?(不能)面積會相等嗎?請同學們4人一小組討論,并可以在剛發下的作業紙上涂涂畫畫,驗證你的結論。
小組交流,教師巡視,并指導。
3.指導驗證。
師:你們組是怎么想的?指名回答。你在觀察這兩幅圖的時候有什么發現嗎?
學生說想的過程,并投影出示學生的作業紙。
(生可能回答上半圓平移下來就是下半圓,他們的面積吻合;“花瓶”突出來的半圓就是瓶口凹下去的半圓,只要分別把他們旋轉180度就可以了)。
教師及時評價并用演示剛才學生說的過程。
提問:這兩幅圖經過旋轉和平移后都變成了什么圖形?(生:長方形。)。
提問:變成長方形后它們的面積相等嗎?為什么?(生:相等,長和寬一樣,所以面積一樣。)。
教師再次演示變化過程,提問:在兩幅圖變化的過程中,什么不變?(面積)都把它變成了誰的面積?(生:長方形。)。
小結:因為我們無法一下子看出這兩個平面圖形的大小,但分別把它們轉化成一個長方形后,我們就能比較這兩個圖形的大小了。在解決問題的過程中,我們經常會用到這樣的策略——轉化。(板書:解決問題的策略——“轉化”)。
三、應用策略,歸納方法。
1.談話:剛才,我們運用轉化的策略把不規則的圖形變成規則圖形來比較大小。在有關平面圖形的計算中經常會用到“轉化”的策略。請同學們試著來解決以下問題。
(1)練習十四第2題的左邊兩幅圖。
學生獨立思考后口答,教師相機演示。
(2)“練一練”右邊的圖形和練習十四第3題的第一幅圖。
提問:你能用比較簡便的方法快速地求出圖形的周長嗎?
學生先獨立思考,然后和同桌交流。
個別學生介紹自己的方法,教師相機演示。
小結:在解決這些問題的過程中,我們都用到了怎樣的策略?(轉化)我們要把復雜的圖形轉化未為簡單的圖形,具體地說又是用到了以前學習的哪些知識呢?(平移和旋轉)。
四、回顧知識,體驗轉化。
1.談話:其實我們以前學過的知識中,很多都運用了轉化的策略,哪位同學來說說看。
指名回答,生可能會說:1.推導三角形公式時,把三角形轉化成平行四邊形。2.推導梯形時把梯形轉化成平行四邊形。3.推導圓面積時,把圓面積轉化成長方形。4.計算小數乘法時把小數乘法轉化成整數乘法。5.計算分數除法時把分數除法轉化成分數乘法等等。
在學生說的過程中請學生說說推導的過程,并相應演示推導過程。
小結:看來,“轉化”的確是一種非常重要的解題策略,在剛才的交流和演示的過程中,你覺得這種策略有什么優點?(學生交流后教師相機板書:化復雜為簡單,化未知為已知,化不規則為規則------)。
五、拓展運用,提升策略。
1.出示試一試:計算1/2+1/4+1/8+1/16。
提問:(1)這些分數分別表示什么意思?生根據分數的意義回答,并強調單位“1”相同。(2)相鄰的分數是什么關系?(后一個是前一個的1/2)。
師:我們一起來畫圖表示看看。師根據題目依次畫圖。
師:這題我們又可以怎樣轉化呢?學生看圖解答。
指名回答。1-1/16=15/16。
(如果學生回答不出,師提示:求陰影部分,空白部分又是多少呢?)。
小結:在解決這個分數加法的計算題時,我們借助圖形來分析問題,把復雜的算式變成了簡單的算式。這也是運用了“轉化”的策略——數形結合。(板書)。
3、出示:比較大小:16/17和35/36。
你準備怎樣比?先和同桌說一說,再組織交流。體會:異分母分數大小比較,一般要通分后比較大小,通分很麻煩,現在只要轉化成比較1/17和1/36的大小就可以了。
2.談話:在解決一些稍復雜的實際問題時,有時我們也可以用“轉化”的策略思考問題將復雜問題變得簡單些。請同學們看這一題:
出示練習十四第1題。
(1)學生讀題理解單場淘汰制的比賽規則并看懂圖的意思。
(2)提問:什么是單場淘汰制?你能結合示意圖來說說淘汰賽的過程嗎?你會列式計算嗎?(學生列式計算后進行解釋。)。
(3)提問:如果不畫圖,有更簡便的計算方法嗎?(提示:不管第幾輪,每場比賽都要淘汰幾支球隊?到決出冠軍為止,一共要淘汰多少支球隊?那么一共要比賽多少場?這樣看來求比賽了多少場就轉化成了什么問題?)。
(4)如果有64支球隊,產生冠軍一共要比賽多少場?
3.出示練習十四第2題的第3幅圖。
學生先獨立思考,然后指名學生交流自己的想法,教師及時評價并演示。
4.出示練習十四第3題的第2幅圖。
要求圖形中紅色部分的周長是多少,你有什么好方法?
學生獨立思考后解答(思路:轉化成2個圓的周長),集體校對。
小結:誰來說說我們是怎樣運用“轉化”的策略來解決這兩個問題的?
六、課堂小結。
今天我們學習的解決問題的策略是什么?“轉化”隨時隨地都在我們身邊,你認為在什么時候采用“轉化”的策略能較好地解決問題?生回答。
七、課堂作業:完成補充習題相關內容。
解決問題的策略——轉化。
平移轉化成體積相等的長方形。
旋轉(順時針,逆時針)不規則——規則。
s三角形——s平行四邊形復雜——簡單。
s梯形——s平行四邊形未知——已知。
s圓——s長方形不熟悉——熟悉。
------。
小數乘法——整數乘法。
分數除法——分數乘法。
高一數學教案設計(模板16篇)篇十二
教科書第58頁的“用數學”。
1.使學生會用學過的數學知識解決簡單的實際問題。
2.培養學生用不同的方法解決同一個問題的能力。
3.初步感受數學在日常生活中的作用。
引導學生通過分析數量關系選擇正確的計算方法解決問題。
教具學具準備。
課件,實物投影儀,展臺,屏幕,練習用的圖片。
教師:同學們,鹿老師組織了一個旅游團要到大森林里去游玩。你們想參加嗎?
生:想。
師:坐上我們的小火車,準備出發了。(放音樂;火車開了。學生以小組為單位做律動)。
出示課件:美麗的大森林。
師:瞧,美麗的大森林到了,有這么多可愛的小動物,你們喜歡嗎?
生:喜歡。
師:今天小動物們要請喜歡數學的同學去他們中間玩,你們誰想去呀?
生:……(爭先恐后地說想去)。
生:行。
師:我們先去看看草坪上的小動物都有什么問題呀?(課件拉近第一幅畫面,并演示)。
師:你都看到了什么?
生:我看到了草地上原來有9只小鹿在吃草,后來走了3只。(課件出示:大括號和9只)。
師:那你能幫助小鹿提出一個數學問題嗎?
生:草地上還剩幾只鹿?(課件出示:?只)。
師:你的問題提得真好。誰能用學過的數學知識解決這個問題呢?先請你們集中五人的力量分小組研究一下。研究完以后,把算式寫在小黑板上。然后進行匯報和訂正。
師:哪個小組愿意來展示一下你們小組研究的結果?
生:我們組列的算式是:9—3=6,草地上還剩6只鹿。
師:誰有問題要問他們?(引導學生提問題)。
生提問:請問你們為什么要用減法計算?
生解答:因為原來草地上有9只小鹿,跑了3只,求草地上還有幾只就是求還剩幾只。這3只小鹿是從9只里面跑掉的,所以用從9只里面去掉3只,就是剩下的6只。
生提問:9-3為什么等于6?
生解答:因為9能分成3和6。或因為3+6等于9,所以9-3=6。
師小結:同學們真是太聰明了,這么快就幫助小鹿解決了問題,你們數學學得真好。老師真是太高興了。
過渡:看著這幅畫面,你還能發現什么數學問題?(引導學生看草地上的蘑菇)。
學生可能出現三種情況:
1.生提問:草地上一共有8個蘑菇,左邊有6個,右邊有幾個?
師:誰能解決這個問題?
生解答:8-6=2。
生提問:你為什么用減法?
生解答:因為知道了一共有8個蘑菇,左邊有6個蘑菇,從8個里面去掉左邊的6個就是右邊的2個,所以用減法。
師引導:還有發現不同問題的嗎?
2.生提問:草地上一共有8個蘑菇,右邊有2個,左邊有幾個?
師:誰能解決這個問題?
生解答:8-2=6。
生提問:你為什么用減法?
生解答:因為知道了一共有8個蘑菇,右邊有2個蘑菇,從8個里面去掉右邊的2個就是左邊的6個,所以用減法。
師引導:還有發現不同問題的嗎?
3.生提問:左邊有6個蘑菇,右邊有2個蘑菇,一共有幾個蘑菇?
師:你發現的問題真好,同學們聽清楚了嗎?我們再請他說一遍,好嗎?
(生說,課件依次出示:6只,大括號,?只)。
師:這個問題我們請同學們分小組來解決,好嗎?
請一個小組來匯報。提要求:要說清楚你們小組采用的是哪種計算方法,為什么?怎樣列的算式。
生匯報:我們小組采用的是加法,因為這個問題得求總數,我們只要把左邊的6個和右邊的2個合起來就行了,所以用加法。列的算式是:6+2=8。
(課件出示鴨子圖。)。
師:你會解決這個問題嗎?不告訴別人,自己把算式寫在紙上。
學生獨立完成,然后集體訂正。
師小結:大家幫助小鴨子解決了問題,聽它們在謝你們呢?(課件演示鴨子叫)。
課件演示聲音:小鴨子的問題解決了,我們還有問題呢?
師:這是誰的聲音呀?(課件出示猴子圖)原來是小樹林里的猴子們等急了,你們能解決猴子們的問題嗎?自己完成。
學生寫出算式,然后集體訂正。
(一)做題小競賽。
師過渡:同學們,你們還想不想繼續幫助小動物們解決問題呀?
生:想。
學生獨立做題。
集體訂正。(指名直接說算式,集體判斷,最后挑出一個題讓學生說一說想法)。
(對全做對的同學進行獎勵。)。
學生隨意說。(教師相繼進行熱愛大自然,保護小動物的教育)。
讓我們開啟小火車回家吧。
(二)完成教科書第62頁的第13、14題。
讓學生獨立完成,然后在小組里訂正。最后集體訂正。
(三)請學生想一想在日常生活中能用數學知識解決哪些實際問題。
學生隨意說。
師:數學知識真重要呀,他能幫我們解決這么多實際問題,我們一定要學好它。
高一數學教案設計(模板16篇)篇十三
1.使學生進一步理解乘數是兩位數的連續進位乘法的算理,掌握兩位數的進位乘法的計算方法。
2.培養學生的分析推理能力。
理解乘數是兩位數的連續進位乘法的`算理。
掌握兩位數的進位乘法的計算方法。
一、自主探索,領悟知識。
1.創設情景,提出問題。
一個牌子寫著“門票每人48元”,有7名同學進入博物館參觀展覽。
(1)學生根據以上情景提出數學問題。
2.改變情景,引出新課。
改變條件:一共進72人。學生根據新情景提出問題。
(1)教師根據學生提出的問題有選擇性地解答并板書:48×72。
(2)小組研究計算方法。
(3)小組匯報。
(4)教師根據情況,重點指出以下兩個方面:
計算方法與前面的相同,相同的數位要對齊。不同的是48×72需要連續進位,要特別注意。
(5)練習:683745。
×34×82×46。
2.學習例4。
出示例題。
(1)讓學生讀題理解題意,再口頭列出算式。
(2)讓學生獨立試做。
(3)請一名學生展示計算過程,并說一說算理。
(4)其他學生補充完整,必要時教師給予指導。
(5)練習215309。
×32×25。
二、鞏固反饋,深化知識。
1.第11頁的做一做。
2.判斷。
(1)57(2)306(3)193(4)403。
×35×35×36×35。
25515301158215。
17112043791612。
196513570494816335。
板書:用兩位數乘(連續進位)。
48×72=3456114×59=6726(分)。
48114。
×72×59。
961026。
336570。
34566726。
答:要用6726分。
高一數學教案設計(模板16篇)篇十四
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印。
高一數學教案設計(模板16篇)篇十五
(二)根據1厘米和1米的實際長度,知道“1米=100厘米”.。
(三)通過同學的合作,能用米尺度量整米長度的物體,培養學生的動手操作能力.。
教學重點和難點。
重點:掌握1米的實際長度.。
難點:用米尺量較長物體的長度.。
教具和學具。
教具:1米的直尺、折尺、卷尺,4厘米、6厘米長的紙條.。
學具:1米的卷尺,1根較長的繩子.。
教學過程設計。
(一)復習準備。
1.提問。
(2)用刻度尺量物體的長度應注意什么?指名兩名學生量下面紙條的長度.。
(二)學習新課。
1.認識米。
出示米尺,這是一把米尺,觀察它的刻度都是以10厘米為單位.。
讓學生觀察自己帶來的1米長的卷尺,和教師1米直尺的刻度是一樣的.。
以小組為單位,量出1米,2米,……給大家看.。
2.厘米和米之間的關系。
同時板書:1米=100厘米。
3.用卷尺量較長的距離。
(三)鞏固反饋。
1.兩人互相量身高,_______米______厘米。
3.在()內填寫合適的長度單位米或厘米.。
教室長6()黑板長2()。
小明身高124()課桌長50()。
課堂教學設計說明。
高一數學教案設計(模板16篇)篇十六
本節的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.
本節的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.
教法建議
1.性質的引入方法很多,以下2種比較常用:
(1)設計問題引導啟發:由設計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發、引導學生猜想出
(2)從算術平方根的意義引入.
2.性質的鞏固有兩個方面需要注意:
(1)注意與性質進行對比,可出幾道類型不同的題進行比較;
(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.
(第1課時)
1.掌握二次根式的性質
2.能夠利用二次根式的性質化簡二次根式
3.通過本節的學習滲透分類討論的數學思想和方法
對比、歸納、總結
1.重點:理解并掌握二次根式的性質
2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
1課時
五、教b具學具準備
投影儀、膠片、多媒體
復習對比,歸納整理,應用提高,以學生活動為主
一、導入新課
我們知道,式子()表示非負數的算術平方根.
問:式子的意義是什么?被開方數中的表示的是什么數?
答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數的冪的底數都是什么數?
2.各小題的結果和相應的被開方數的冪的底數有什么關系?
3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.