在制定教學工作計劃時,教師可以充分考慮學生的實際需求和特點,提供有針對性的教學方案。小編為大家整理了一些教學工作計劃的模板,請大家根據個人教學情況進行合理調整和應用。
曲線和方程的數學教案設計(通用23篇)篇一
1.教材背景。
作為曲線內容學習的開始,“曲線與方程”這一小節思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側重對所求方程的檢驗.
本課為第二課時。
主要內容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求.
2.本課地位和作用。
承前啟后,數形結合。
曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎,是解幾中承上啟下的關鍵章節.
“曲線”與“方程”是點的軌跡的兩種表現形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題.體現了坐標法的本質——代數化處理幾何問題,是數形結合的典范.
后繼性、可探究性。
求曲線方程實質上就是求曲線上任意一點(x,y)橫縱坐標間的等量關系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現運動變化特點,但如何獲得曲線的方程呢?通過創設情景,激發學生興趣,充分發揮其主體地位的作用,學習過程具有較強的探究性.
同時,本課內容又為后面的軌跡探求提供方法的準備,并且以后還會繼續完善軌跡方程的求解方法.
數學建模與示范性作用。
曲線的方程是解析幾何的核心.求曲線方程的過程類似于數學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結規律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.
數學的文化價值。
解析幾何的發明是變量數學的第一個里程碑,也是近代數學崛起的兩大標志之一,是較為完整和典型的重大數學創新史例.解析幾何創始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質疑的科學精神等都是富有啟發性和激勵性的教育材料.可以根據學生實際情況,條件允許時指導學生課后收集相關資料,通過分析、整理,寫出研究報告.
3.學情分析。
我所授課班級的學生數學基礎比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數方法研究幾何問題的科學性、準確性和優越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經有了自然的求知欲望.
二、目標分析。
1.教學目標。
知識技能目標。
理解坐標法的作用及意義.
掌握求曲線方程的一般方法和步驟,能根據所給條件,選擇適當坐標系求曲線方程.
過程性目標。
通過學生積極參與,親身經歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優越性,滲透數形結合的數學思想.
通過自主探索、合作交流,學生歷經從“特殊——一般——特殊”的認知模式,完善認知結構.
通過層層深入,培養學生發散思維的能力,深化對求曲線方程本質的理解.
情感、態度與價值觀目標。
通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的'喜悅,體會數學的理性與嚴謹,逐步養成質疑的科學精神.
展現人文數學精神,體現數學文化價值及其在在社會進步、人類文明發展中的重要作用.
2.教學重點和難點。
難點:幾何條件的代數化。
依據:求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.
曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數研究的先決,求曲線方程的過程類似數學建模的過程,是課堂上必須突破的難點.
三、教學方法及教材處理。
1.教學方法:探究發現教學法.
遵循以學生為主體,教師為主導,發展為主旨的現代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,通過學生主動探索、積極參與、共同交流與協作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現知識的建構和發展,通過不斷探究、發現,讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發揮.
2.學法指導。
學生學法:互相討論、探索發現。
由于學生在嘗試問題解決的過程中常會在新舊知識聯系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導.作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程進行反思等,在師生(生生)互動中,給予學生啟發和鼓勵,在心理上、認知上予以幫助.
這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結構,使學生思維、能力等得到和諧發展.
曲線和方程的數學教案設計(通用23篇)篇二
教學目標:
1、借助天平明白等式的含義,并在分類的基礎上充分感受、認識什么是方程。
2、會用方程表示數量關系。
3、培養學生觀察、描述、分類、抽象、概括、應用等能力。
4、感受方程與現實生活的密切聯系,體驗數學活動的探索性。
重點:理解方程是含有未知數的等式;
難點:方程的意義抽象的過程。
課前談話:滲透平衡和等量(談體驗)。
教學過程:
一、激情導入。
出示天平,(見過天平嗎?在那里見過?有什么作用啊?)根據天平的狀態列出不同的式子,(不平衡讓學生想辦法得出讓天平兩邊平衡)。
二、探究新知。
1.對不同的式子進行分類(不要有任何要求)。
讓學生先獨立思考,然后小組合作交流自己的想法。
2.小組匯報分類的想法。小組之間在傾聽的過程中逐漸完善自己本組的想法。
讓小組的代表說說自己組是怎樣分類的?為什么這樣分類?
3.教師根據各小組的分類進行小結:像這樣的用等號連接左右兩邊的叫做等式。像這樣的這一類叫方程。板書課題。(在學生分類的基礎上)。
4.小組探究“什么是方程?”(先觀察式子,獨立思考,后小組交流)。
5.小組匯報各組的想法。在各組傾聽的基礎上逐漸完善自己的想法。
6.教師在學生小組匯報的基礎上進行小結:像這樣,含有未知數的等式叫方程。
7.生舉例。
8、師舉例,讓學生說哪些是方程哪些不是方程,并說明理由。
9、通過剛才的幾道算式,讓學生說說對方程又有了哪些新的認識?
10、判斷兩句話:所有的方程都是等式,所有的等式都是方程。
11、畫圖表示方程與等式之間的關系。
三、應用練習。
1.判斷下列式子是不是方程。
2.看圖列方程。
3.根據題意列方程。
四、拓展延伸。
1、談談自己在知識和情感上的收獲。
2、送給同學們一個方程:天才+x=成功。
曲線和方程的數學教案設計(通用23篇)篇三
這節課的內容是一元一次方程第一課時。課后,我對本節課從四方面進行了如下反思:
一:對選擇引例的反思。
在小學學生已接觸過方程,但沒有過多的研究。而本節課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節課既要讓學生認識到方程是更方便、更有力的數學工具,又要讓學生體驗到從算術方法到代數方法是數學的進步,這些目標的實現談何容易!課本上的例題雖然能很好的體現方程的優越性,但難度較高。學生很少有利用方程解應用題的經歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術到方程的進步呢?幾乎翻閱了所有的有關資料,無獨有偶,在新課標教案126頁的一道數學名題“啊哈,它的全部,它的一半,其和等于19。”讓我眼前一亮,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數學組經驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現出從算術到方程的進步,因為題很簡單,方程的優越性體現的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優越性,后面學習中再不斷地滲透方程的優越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創新又能激發學生的興趣,既符合學生的已有經驗和知識水平,又符合學生的認知規律。
二:對選題的反思。
我在備課中【活動3】最初選用的題是:
修改后的題是:
判斷下列各式是方程的有:
(1)(2)(3)(4)(5)。
考慮到學生初對方程概念的研究,不在數字上人為的設置障礙,因為是否是方程與數字的大小根本無關,于是把數字全部統一成了6、2、8三個數,利于學生從未知數和等號的角度進一步理解方程的概念。最初選用的題數字太多,顯得題很多且條理性不強,容易分散學生對概念本質的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質的提升,即:是否是方程與未知數所在的位置、未知數的個數、未知數的次數等均無關。
三:對課堂實踐的反思。
本節課的設計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結。
當環節進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發現學生在黑板上寫的全部都是未知數在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數的方程來彌補設計上的不足時,我忽然發現最后一排的一位男生已經高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數和等號就ok了,與未知數的位置無關!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜。”
四:教后整體反思。
成功之處:
1.引例、練習題的選擇都很恰當。
2.思路清晰,重點突出,注意到了學生的自主探索,節奏把握較好。
3.數學文化的滲透比較自然。
4.“寫一個或幾個一元一次方程”此環節的設計體現了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。
5.語言簡練,教態大方,師生互動比較熱烈,充分調動了學生的積極性。
6.板書設計較為合理。本節課的主要內容都以提煉的方式呈現出來。
不足之處:
1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。
2.在后面兩組題環節之間的過渡語言不是很自然。
3.授課語言仍需加強錘煉。
這節課的準備和每個環節的設計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!
曲線和方程的數學教案設計(通用23篇)篇四
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數量關系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數式的初步經驗,鍛煉抽象思維能力。
3、情感態度與價值觀:學生在獨立思考的過程中,能將生活中的經驗與所學的知識結合起來,形成實事求是的態度以及進行質疑和獨立思考的習慣。
重點:理解一元二次方程的意義,能根據題目列出一元二次方程,會將不規則的一元二次方程化成標準的一元二次方程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結作業。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
xx。
xx。
曲線和方程的數學教案設計(通用23篇)篇五
活動3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程應注意的事項;歸納一元一次方程解法的一般步驟·活動4小結總結本節收獲活動1、創設問題情境:引言:這件珍貴的文物是紙莎草文書,是古代埃及人用象形文字寫在一種特殊的草上的著作,至今已有3700多年的歷史了·在文書中記載了許多有關數學的問題·問題一個數,它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。(1)能不能用方程解決這個問題?(2)能嘗試解這個方程嗎?(3)不同的解法有什么各自的特點?設計意圖:1、利用列方程、解方程解決實際問題,再一次讓學生感受方程的優越性,提高學生主動使用方程的意識·2、經過對同一方程不同解法到去分母能夠使解方程的過程更加便捷,明白為什么要去分母,這是"去分母"這一步驟的必要性;同時,讓學生認同"去分母"是科學的、可行的,明確為什么能去分母·這樣,學生就會自覺參與探索去分母的一般做法的活動,從而發現"方程兩邊同時乘以所有分母的最小公倍數"這一方法·也首次由學生自行突破了難點。3、通過交流,讓學生用自己的語言清楚地表達解決問題的過程,提高學生的語言表達能力·活動2下面方程可以怎樣求解?觀察方程,回答教師提出的問題并對學生的回答進行總結:先去分母·怎樣去分母?解去掉分母后的這個方程歸納總結去分母的方法:在方程兩邊同時乘以所有分母的最小公倍數;依據是等式的性質2,即"等式兩邊同時乘同一個數,結果仍相等·"呈現不同學生的解題過程,選取學生在去分母過程中出現的典型錯誤,引導全體學生共同分析錯誤的原因,發現去分母的易錯點·鞏固了學生對解方程的透徹理解。這樣做的目的不僅培養了學生的學習自主性和團體協作精神,還對與重、難點知識的突破起到了一定的促進作用。通過對錯例的辨析,加深學生對"去分母"的認識,避免解方程時出現類似錯誤·去掉分母后,方程即轉化為熟悉的形式,新舊知識自然銜接,使學生體會到,只要把新問題想辦法合理轉化為熟悉的知識,問題就能得以解決通過在解方程過程中"去分母"這一步驟體會轉化思想·活動3解方程設計意圖:用實踐來加深對"去分母"的方法解一元一次方程的認識·結合本題思考,能總結解這種方程的一般操作過程嗎?鞏固所學的一元一次方程的解法,同時說明解方程的步驟是程序化的,但不能生搬硬套,每個步驟要不要使用、何時使用都應視方程的特征而定·了解對方程的每一次變形都是為了將方程最終化歸為的形式·解題時應根據題目特點,合理選擇解題步驟·小結活動4總結(1)學生能否總結本節的知識,是否理解去分母的作用、依據,是否掌握去分母的具體做法;(2)學生是否掌握了一元一次方程解法的一般步驟;(3)學生是否能準確表達自己的觀點·最后復習、鞏固本節的知識,學會總結反思·四。評價分析數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同參與發展的過程。本節課的評價要讓學生體會到參與學習、與人合作的重要性,獲得成績的喜悅,從而激發性的學習動力。在這節的數學課,如要獲得最直接、真實的反饋,就要盡量讓學生多說、多思考,對于學生提出的問題和解決問題的方法,教師都要給予鼓勵和引導,并隨時觀察解決,評價應充分考慮到每個學生的差異,這節課通過現代化的技術的運用,節省出盡可能多的時間,提出挑戰性的問題,讓學生通過開放式的數學討論提高學生學習的興趣,在交流中獲益。通過隨堂練習和作業來激勵其學習。同時做練習時,將評價及時反饋給學生,樹立學習數學的自信心,促進學生的進一步發展。并在課后作成長記錄,使學生比較全面了解自己的學習過程,特別感受自己的不斷成長和進步,為下一步教學提供重要依據。
曲線和方程的數學教案設計(通用23篇)篇六
1.小明用天平測量物體的質量(如下圖),已知每個小砝碼的質量為1克,此時天平處于平衡狀態.若設大砝碼的質量為x克.
考查說明:本題主要考查等式基本性質1.
答案與解析:根據等式基本性質1:等式兩邊同時加或減去同一個數或式子,結果仍為等式.
2.方程3y=。
兩邊都除以3得y=1。
改正:________________________________________________.
考查說明:本題主要考查等式基本性質2并熟練運用.
答案與解析:得y=。
兩邊同時除以3時,右邊也要除以3,不是乘以3。
3.當x=時,60-5x=0.
考查說明:本題主要考查利用等式兩條基本性質來解簡單方程.
答案與解析:12.由原方程和等式性質1得5x=60,再由等式性質2,兩邊同除以5,得x=12.
4.方程的解是(36,48中選填一個)。
考查說明:本題考查的知識點是方程的解的概念,使得等號成立即可.
答案與解析:36.方程的解使等式兩邊相等,把兩個數代入驗算即可.
5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數相同,則根據題意可列方程為_____________.
考查說明:本題主要考查根據題意找等量關系,從而列出方程.
答案與解析:55-x=29+x.等量關系為:抽調后,三班人數=八班人數,關鍵要理解三班少了x人的同時,八班多了x人.
二、選擇題。
6.下列方程中,是一元一次方程的是()。
a、
b、
c、
d、
考查說明:本題主要考查一元一次方程的概念.
答案與解析:a.a和b都需要化簡后再判斷,c明顯是二元的,d分母中含未知數,不是整式方程.
7.根據下列條件能列出方程的是()。
a.一個數的'與另一個數的的和。
b.與1的差的4倍是8。
c.和的60%。
d.甲的3倍與乙的差的2倍。
考查說明:本題考查的知識點是方程與代數式的區別.
答案與解析:b.其余幾個答案都不能列出等號.
三、解答題。
考查說明:本題考查的知識點是列一元一次方程解應用題,并會利用等式性質解簡單的一元一次方程.本題等量關系為:教師票價+學生票價=910.
答案與解析:設:學生有x人,根據題意。
列出方程得70+70x×=910,
解方程得70x×=840,
即35x=840,
所以x=24.
曲線和方程的數學教案設計(通用23篇)篇七
2.通過自學探究掌握裁邊分割問題。
(閱讀課本p47頁,思考下列問題)。
1.閱讀探究3并進行填空;
2.完成p48的思考并掌握裁邊分割問題的特點;
設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學生口答書中填空,老師再給予補充。
思考:如果換一種設法,是否可以更簡單?
設正中央的長方形長為9acm,寬為7acm,依題意得。
9a·7a=(可讓上層學生在自學時,先上來板演)。
效果檢測時,由同座的同學給予點評與糾正。
9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)。
注意點:要善于利用圖形的平移把問題簡單化!
(只要求設元、列方程)。
曲線和方程的數學教案設計(通用23篇)篇八
一、教學目標:
1、通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。
2、通過觀察,歸納的概念。
3、積累活動經驗。
二、重點和難點。
歸納的概念。
感受方程作為刻畫現實世界有效模型的意義。
三、教學過程。
1、課前訓練一。
(1)如果||=9,則=;如果2=9,則=。
(2)在數軸上距離原點4個單位長度的數為。
(3)下列關于相反數的說法不正確的是()。
a、兩個相反數只有符號不同,并且它們到原點的距離相等。
b、互為相反數的兩個數的絕對值相等。
c、0的相反數是0。
d、互為相反數的兩個數的和為0(字母表示為、互為相反數則)。
e、有理數的相反數一定比0小。
(4)乘積為1的兩個數互為倒數,如:
(5)如果,則()。
a、,互為倒數b、,互為相反數c、,都是0d、,至少有一個為0。
(6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經過幾周后樹苗長高到1米?設大約經過周后樹苗長高到1米,依題意得方程()。
a、b、c、d、00。
2、由課本p149卡通圖畫引入新課。
3、分組討論p149兩個練習。
4、p150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設這個足球場的寬為米,那么長為(+25)米,依題意可列得方程為:()。
課本的寬為3厘米,長比寬多4厘米,則課本的面積為平方厘米。
解:設每個練習本要元,則每個筆記本要元,依題意可列得方程:
6、歸納方程、的概念。
7、隨堂練習po151。
8、達標測試。
(1)下列式子中,屬于方程的是()。
a、b、c、d、
(2)下列方程中,屬于的是()。
a、b、c、d、
解:設甲隊勝了場,則平了場,依題意可列得方程:
解得=。
答:甲隊勝了場,平了場。
(4)根據條件“一個數比它的一半大2”可列得方程為。
(5)根據條件“某數的與2的差等于最大的一位數”可列得方程為。
p151習題5.1。
曲線和方程的數學教案設計(通用23篇)篇九
教學內容:
教科書第1頁的例1、例2和試一試,完成練一練和練習一的第1~2題。
教學目標:
理解方程的含義,初步體會等式與方程的聯系與區別,體會方程就是一類特殊的等式。
教學重點:
教學難點:
會列方程表示數量關系。
教學過程:
一、教學例1。
1.出示例1的天平圖,讓學生觀察。
提問:圖中畫的是什么?從圖中能知道些什么?想到什么?
2.引導。
(1)讓不熟悉天平不認識天平的學生認識天平,了解天平的作用。
(2)如果學生能主動列出等式,告訴學生:像“50+50=100”這樣的式子是等式,并讓學生說說這個等式表示的意思;如果學生不能列出等式,則可提出“你會用等式表示天平兩邊物體的質量關系嗎?”
二、教學例2。
1.出示例2的天平圖,引導學生分別用式子表示天平兩邊物體的質量關系。
2.引導:告訴學生這些式子中的“x”都是未知數;觀察這些式子,說一說寫出的式子中哪些是等式,這些等式都有什么共同的特點。
3.討論和交流:寫出的式子中,有幾個是等式,有幾個不是,而寫出的等式都含有未知數,在此基礎上,揭示方程的概念。
三、完成練一練。
1.下面的式子哪些是等式?哪些是方程?
2.將每個算式中用圖形表示的未知數改寫成字母。
四、鞏固練習。
1.完成練習一第1題。
先仔細觀察題中的式子,在小組里說說哪些是等式,哪些是方程,再全班交流。要告訴學生,方程中的未知數可以用x表示,也可以用y表示,還可以用其他字母表示,以免學生誤以為方程是含有未知數x的等式。
2.完成練習一第2題。
五、小結。
六、作業。
完成補充習題。
板書設計:
x+50=100。
x+x=100。
像x+50=150、2x=200這樣含有未知數的等式叫做方程。
曲線和方程的數學教案設計(通用23篇)篇十
本節課的重難點都是從實際于問題中尋找相等關系,從而列方程解決實際問題,為了更好地突出重點、突破點,在教學過程中著力體現以下幾方面的特點:
1、突出問題的應用意識。首先用一個學生感興趣的突出問題引入課題,然后運用算術方法給出答案,在各環節的安排上都設計成一個個問題,引導學生能圍繞問題開展思考、討論,進行學習。
2、體現學生的主體意識。始終把學生放在主體地位,讓學生通過對列算式與列方程的比較,分別歸納出它們的特點,從感受到從算術方法到代數方法是數學的進步。通過學生之間的合作與交流,得了出問題的不同解答方法,讓學生對這節課的學習內容、方法、注意點等進行歸納。
3、體現學生思維的層次性。首先引導學生嘗試用算術方法解決問題,然后逐步引導學生列出含未知數的式子,尋找相等關系列出方程。在尋找相等關系,設未知數及練習和作業的布置等環節中,都注意了學生思維的層次性。
4、滲透建模的思想。把實際問題中的數量關系用方程的形式表示出來,就是建立一種數學模型,有意識地按設未知數、列方程等步驟組織學生學習,就是培養學生由實際問題抽象出數學模型的能力。
從當堂練習和作業情況來看,收到了很好的教學效果,絕大部分學生都能根據實際問題準確地建立數學模型,但也有少數幾個學生存在一定的問題,不能很好地列出方程。
【拓展閱讀】。
曲線和方程的數學教案設計(通用23篇)篇十一
教材的地位和作用。
“曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!
根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學目標。
根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:
知識目標:
1、了解曲線上的點與方程的解之間的一一對應關系;
2、初步領會“曲線的方程”與“方程的曲線”的概念;
3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;
3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。
情感目標:
1、通過概念的引入,讓學生感受從特殊到一般的認知規律;
2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的科學精神。
三、重難點突破。
“曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的.方程。通過這些例題讓學生再一次體會“二者”缺一不可。
四、學情分析。
此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。
曲線和方程的數學教案設計(通用23篇)篇十二
3.使學生初步養成正確思考問題的良好習慣。
和難點。
課堂設計。
一、從學生原有的認知結構提出問題。
為了回答上述這幾個問題,我們來看下面這個例題。
例1某數的3倍減2等于某數與4的和,求某數。
(首先,用算術方法解,由學生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.
答:某數為3.
(其次,用代數方法來解,教師引導,學生口述完成)。
解法2:設某數為x,則有3x-2=x+4.
解之,得x=3.
答:某數為3.
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們運用一元一次方程解應用題的目的之一。
我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。
本節課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。
二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)。
上述分析過程可列表如下:
x-15%x=42500,
所以x=50000.
答:原來有50000千克面粉。
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)。
(2)例2的解方程過程較為簡捷,同學應注意模仿。
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
(2)根據題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案。這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥。解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤。并嚴格規范書寫格式)。
解:設第一小組有x個學生,依題意,得。
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.
其蘋果數為3×5+9=24.
答:第一小組有5名同學,共摘蘋果24個。
學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
(設第一小組共摘了x個蘋果,則依題意,得)。
三、課堂練習。
2.我國城鄉居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。
3.某工廠女工人占全廠總人數的35%,男工比女工多252人,求全廠總人數。
四、師生共同小結。
首先,讓學生回答如下問題:
1.本節課了哪些內容?
3.在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(2)以上步驟同學應在理解的基礎上記憶。
五、作業。
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
曲線和方程的數學教案設計(通用23篇)篇十三
一、運用簡便方法使計算更簡單。
二、解決生活中的.問題。
1、學校買來一批籃球和足球。買來籃球12只,共用a元,買來足球b只,每只25元。
籃球的單價比足球貴多少元?當a=576時,籃球的單價比足球貴多少元?
買這批籃球和足球共用了多少元?當a=1200,b=80時籃球和足球共用了多少元?
曲線和方程的數學教案設計(通用23篇)篇十四
只列方程不求解:
4.兄弟兩人的年齡之和是59,弟弟比哥哥小5歲,兄弟各幾歲?
(1)長方形游泳池占地600平方米,長30米,游泳池寬多少米?
(2)面積為15平方厘米的三角形紙片的底邊長6厘米,這條底邊上的高是多少厘米?
(3)一塊梯形草坪的面積是30平方米,量得上底長4米,高6米,它的下底長多少米?
三、提高練習。
曲線和方程的數學教案設計(通用23篇)篇十五
3、能解二元一次方程組的方法求兩條直線的交點坐標。
2、用解二元一次方程組的方法求兩條直線的交點坐標。
1、做圖像時要標準、精確,近似值才接近。
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內容。課上展示,針對自己不明白問題多聽多問。
自主學習部分:
問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發現了什么?
問題2.
(3)由以上探究過程,我們發現解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發現可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
1、用做圖像的方法解方程組。
2、用解方程的方法求直線y=4-2x與直線y=2x-12交點。
曲線和方程的數學教案設計(通用23篇)篇十六
1.使學生初步學會分析稍復雜的兩步計算的應用題的數量關系,正確列出方程.。
2.學生會找出應用題中相等的數量關系.。
教學重點。
訓練學生用方程解“已知比一個數的幾倍多(少)幾是多少,求這個數”的應用題.。
教學難點。
分析應用題等量關系,并會列出方程.。
教學過程。
一、復習準備。
(一)寫出下面各題的式子.。
1.比的3倍多15。
2.比的4倍少2。
3.2個與34的和。
4.5個與0.6的3倍的差。
(二)解答復習題。
少年宮舞蹈隊有23人,合唱隊的人數比舞蹈隊的3倍多15人.合唱隊有多少人?
(學生獨立解答)。
23×3+15。
=69+15。
=84(人)。
答:合唱隊有84人.。
二、新授教學。
(一)導入新課(改復習為例4)。
少年宮合唱隊有84人,合唱隊的人數比舞蹈隊的3倍多15人.舞蹈隊有多少人?
1.比較:例4與復習題有什么相同點和不同點?
相同點:“合唱隊的人數比舞蹈隊的3倍多15人”這句話沒有變;
不同點:復習題已知舞蹈隊人數求合唱隊人數,
例4是已知合唱隊人數求舞蹈隊人數.。
(二)教學例4。
1.畫線段圖分析題意。
2.看圖思考:舞蹈隊人數和合唱隊人數有什么關系?
3.學生匯報討論結果:舞蹈隊人數的3倍加上15正好等于合唱隊人數.。
(根據:合唱隊人數比舞蹈隊人數的3倍多15人)。
4.列方程解答。
教師板書:
解:設舞蹈隊有人.。
答:舞蹈隊有23人.。
5.思考:還可以怎樣列方程?(或)。
引導:例題的方法最簡單,解題時要用簡單的方法解.。
(三)變式練習。
少年宮合唱隊有84人,合唱隊的人數比舞蹈隊的人數的4倍少8人,舞蹈隊有多少人?
三、課堂小結。
今天這節課你學到了什么知識?在學習中你有什么感想?
四、鞏固練習。
(一)只列式不計算.。
1.圖書室有文藝書180本,比科技書的2倍多20本,科技書本.。
2.養雞廠養母雞400只,比公雞的2倍少40只,公雞只.。
(二)學校飼養小組今年養兔25只,比去年養的只數的3倍少8只.去年養兔多少只?
(三)一個等腰三角形的周長是86厘米,底是38厘米.它的腰是多少厘米?
五、課后作業。
六、板書設計。
例4.少年宮合唱隊有84人,合唱隊的人數比舞蹈隊的3倍多15人.舞蹈隊有多少人?
解:設舞蹈隊有人.。
答:舞蹈隊有23人.。
教案點評:
分析數量之間的等量關系,學生已有一定的基礎,本節主要訓練學生掌握根據題目所給的不同條件,找等量關系的方法。
首先引導學生用多種方法解答,并通過觀察、比較、分析,從眾多的等量關系中找出最佳思路,使學生學會從多種角度思考問題,培養學生思維的靈活性。
曲線和方程的數學教案設計(通用23篇)篇十七
1.教學目標、重點、難點.
教學目標:
(1)了解方程的解的概念.
(2)體驗對方程解的估算,會檢驗一個數是不是某個一元方程的解.
(3)滲透對應思想.
重點:方程解的意義,會檢驗一個數是不是一個一元方程的解.
難點:方程解的意義,會檢驗一個數是不是一個一元方程的解.
2.例、習題的意圖。
本節課重點是了解方程的解的意義.通過實際問題中對所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產生尋求方程解法的需求,為后面的學習做好鋪墊.
例1是通過實際問題列出方程,根據(1)題未知數的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學生親身體驗什么是方程的解,也為例2檢驗一個數值是不是方程的解做好鋪墊.對第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學習解方程奠定了積極的心理儲備.
例2是根據方程的解的意義,使學生會檢驗一個數值是不是方程的解,這一點應切實使學生掌握.
3.認知難點與突破方法。
難點是方程解的意義和檢驗一個數是不是一個一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學會檢驗一個數是不是一個一元方程的解.抓住關鍵字“等號左右兩邊相等”,檢驗一個數是不是一個一元方程的解,要分別計算方程的左右兩邊,若其值相等,則這個未知數是方程的解,若不相等,則不是方程的解.
二、新課引入。
復習:
1.什么是一元一次方程?
2.練習:當,,時,求式子的值.
答案:,,.
通過練習2強調求式子的值的一般步驟,其中易錯易混的地方,如代入的值是負數,應加上括號,數與數相乘時應恢復乘號,運算關系不能混淆等.
三、例題講解。
例1教材p69中例1。
分析:三個題目中的相等關系分別是:
(1)計算機已使用的時間+繼續使用的時間=規定的檢修時間.
(2)2(長+寬)=周長.
(3)女生人數—男生人數=.
分析:方程中等號左邊有未知數,估算的值代入方程應使等號左邊的值等于等號右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數,不妨讓,,……分別代入方程算一算.
由計算結果可以看到,每一個的允許值都使代數式有一個確定的數值,為方便起見,可以列一個表格:
1234567…185021502300245026002750…從表中發現:當時,的值是,也就是,當時,方程中等號的左邊:.等號的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數的值為5.所以,方程的解就是.
教材p71中的小云朵,可以多選幾個情況來說明,以加強對方程解得意義的理解.
從表中你還能發現哪個方程的解?(引導學生得出)如方程的解是;方程的解是等等,使學生進一步體會方程解的概念.
方程解的意義:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.
由于這兩個方程估算其解有一定的困難,數不整齊,或方程比較復雜,出現矛盾沖突,引導學生得出:學習解方程的方法十分必要.
怎樣檢驗一個數是否是方程的解呢?
曲線和方程的數學教案設計(通用23篇)篇十八
1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數學“建模”能力的培養。為后面學習打下基礎。
3、在課堂的第二個環節中,通過實際問題的'引入,讓學生動起腦來,階梯型問題的設置使得一些后進生也投入到課堂中來,體現了差異性的教學。在學生慢慢列出方程的同時其實也培養了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發學生參與數學的興趣,在列完方程的最后讓學生歸納出列方程解應用題的基本步驟。使學生加深對知識的掌握也培養了他們的語言組織能力以及學會標準的數學用語。
二、從教學方法反思。
本節課本著“尊重差異”為基礎,先“引導發現”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應用題的基礎,抓住基礎知識再去發展他們的邏輯思維能力對后進生是十分重要的。
三、從學生反饋反思。
這堂課學生能積極思考,認真學習,課后作業都能及時完成。作業質量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數量關系去列方程。
曲線和方程的數學教案設計(通用23篇)篇十九
用字母表示數,是代數與算術的一個重要區別,用字母表示數是代數的一個重要特點。有了用字母表示數,使具有相同性質的不一樣數學問題都能夠用同一個式子表示出來,使數量關系的表示簡潔明了,更具有普遍意義了,給研究和計算帶來了極大的方便。本節教材在現實情境中進一步理解用字母表示數,掌握用字母表示數,讓學生在探索現實世界數量關系的過程中,建立符號意識。
在小學數學中,已經滲透了用字母表示數的思想,并已開始用字母表示計算法則和公式,所以學生較容易理解。初一學生具有好勝、好強的特點,班級中已初步構成合作交流、敢于探索與實踐的良好學風,學生間相互評價、相互提問的互動的氣氛較濃。
蘇霍姆林斯基說過:“人的心靈深處,都有一種根深蒂固的需要,就是期望感到自我是一個發現者、研究者、探索者。”所以教師要尊重學生的主體性,精心設計知識的呈現形式,營造良好的研究氛圍,讓學生置身于一種探索問題的情境中,以激發學生的創新潛能和實踐本事,為學生的可持續發展打下基礎。為此,我沒有利用青島版教材的情境圖,而是利用學生熟悉的情景,開學了,每人需要2個本,3個人需要幾個本?4個人呢?10個人呢?100個人呢?照此算下去,什么時候能算完呢?這時學生提出問題了,能否用一個簡單的式子來代替呢?有的孩子提出用三角符號,有的孩子說用字母,這樣自然就產生了用字母來代替數,學生也就順其自然的明白了在算很多同樣的東西時,無法用算式表示完的時候,就產生了用字母來表示。那里的字母能夠表示哪些數呢?用字母來表示有什么好處呢?經過剛才一系列的探討學生自然就心領神會了。
將本文的word文檔下載到電腦,方便收藏和打印。
曲線和方程的數學教案設計(通用23篇)篇二十
在小學數學教學中,列方程解應用題是難點。這一部分內容融入了等式的性質,利用四則運算各部分的關系,有助于對所學的算術知識進行鞏固和加深理解,初步滲透代數的思想,然而在這一部分教學中存在一定的難點。
一、審清題意:
審題,理解題意。即全面分析題目中的已知量、未知量及二者之間的關系。特別要把牽涉到的一些概念術語弄清,如同向,相向,增加到,增加了等。
二、確立未知數:
三、尋找等量關系:
“含有未知數的等式稱為方程”因而是“等式”是列方程比不可少的條件。所以尋找等量關系是解題的關鍵。常見的等量關系有以下幾種:
1、總量相等;2、成倍數相等;3、按公式相等;
小學常用數量關系總結:
曲線和方程的數學教案設計(通用23篇)篇二十一
一、用含有字母的式子表示:
(1)桃樹的棵數是梨樹的2倍,如果設梨樹的棵數為x棵,則桃樹的棵數為。
(2)桃樹的.棵數是梨樹的1.5倍,如果設梨樹的棵數為x棵,則桃樹的棵數為()。
(3)桃樹的棵比梨多8棵,如果設梨樹為x棵,則桃樹為()。
(4)桃樹的棵比梨少8棵,如果設梨樹為x棵,則桃樹為()。
(5)桃樹是梨樹的2倍多8棵,如果設梨樹為x棵,則桃樹為()。
(6)桃樹是梨樹的1.5倍少8棵,如果設梨樹為x棵,則桃樹為()。
二、只列方程不求解:
(1)有一個長方形的面積是3600㎡,寬是40m,長應是多少米?
(2)已知長方形的周長是26厘米,它的長是8厘米,它的寬應是多少厘米?
(3)已知正方形的周長是100厘米,它的邊長是多少厘米?
(4)果園里有梨樹和桃樹共120棵,桃樹的棵數是梨樹的2倍,兩種樹各多少棵?
(5)果園的桃樹比梨樹多40棵,桃樹是梨樹的2倍,兩種樹各有多少棵?
三、找等量關系列方程解應用題:
四、綜合練習。
曲線和方程的數學教案設計(通用23篇)篇二十二
列方程解應用題是在第七冊學習列出含有未知數的等式解一步計算應用題的基礎上進行教學的。共分四個層次,首先教學比較容易的兩步計算的應用題,其次教學兩、三步計算的應用題,本課內容是第三個層次,第四是用方程和算術方法解應用題的比較。列方程解含有兩個未知數的應用題,是第一次出現在全國統編教材上。例6的內容,在算術中稱為和倍和差倍問題,由于是逆向思考題,解法特殊,不易掌握,現在用方程來解,不僅思路較簡單,而且這兩類問題的思路統一,解法一致,既可減輕學生負擔又提高了解應用題的能力,是今后小學學習分數等應用題的基礎,也是今后到中學繼續學習代數方程解應用題所必須具備的知識,必須重視這部分內容的教學。
本節課的重點是正確設未知數和列出方程,關鍵要找出等量關系,列方程也是教學的難點。
二、對教學方法的選擇。
列簡易方程解應用題是中學列代數方程解應用題的基礎,選擇教學方法時,要注意中小學教學的銜接。
本節課首先要考慮正確運用遷移原理,這對中、小學的學習都將具有積極作用。在準備階段的練習題中,不論是數量關系和解題的方法對學習例6都具有遷移的作用,利用這一原理可引導學生直接去做例6后的想一想,這既能培養遷移推理能力,也能促使學生養成獨立思考的習慣。
其次,由于小學生仍處在從形象思維向抽象思維過渡的關鍵時刻,所以要考慮怎樣做好這個過渡,在教學中采用畫線段圖幫助分析數量關系。線段圖能使數量關系明顯地呈現出來,有助于幫助學生設未知數,找等量關系和列出方程。
第三還要考慮學法指導。本課要教會學生閱讀、分析應用題的方法、驗算的方法,從不同角度思考問題的方法。在教學檢驗方法時,采用閱讀的方式,讓學生邊讀邊想并說出兩個檢驗式子的含義與作用,從中悟出檢驗的方法。教完例6后引導學生想不同的解題思路,列出不同的方程,就是教學生如何從不同角度思考問題的方法。這些方法對今后繼續學習數學是十分必要的。
三、對教學環節的安排。
曲線和方程的數學教案設計(通用23篇)篇二十三
預設5:
解:設海洋面積為x億平方千米。那么陸地面積可以表示為實際問題與方程教學設計億平方千米。
地球表面積-海洋面積=陸地面積。
預設:第一種方法最好,解方程的過程最簡單。
師:同學們你們簡直太聰明了,想出來這么多解決這道題目的方法,不過我們要在這么多的方法之中選擇最優的做法,一般遇到這類求兩個未知量的題目,我們要設一倍量為x,再利用題目中的等量關系來解決問題。
師:接下來請同學們思考,列方程解決實際問題一般需要哪幾個步驟呢?
(3)總結方法。
1、設(找出未知數,用字母x表示)。
2、找(找出題目中的等量關系)。
3、列(根據等量關系列出方程)。
4、解(運用等式的性質解方程)。
5、驗(將解出的結果代入方程檢驗)。
6、答(完整地寫好答話)。
三、鞏固練習。
1、果園里蘋果樹和梨樹一共300棵,梨樹是蘋果樹的5倍,蘋果樹和梨樹各有多少棵。下列說法正確的是()。
a、解:設梨樹為x棵,則蘋果樹為5x棵。
b、解:設蘋果樹為x棵,則梨樹為5x棵。
通過這道題目的練習,使學生更深一步掌握設兩個未知量的方法。
2、找出下列各題中的等量關系。